What is Redpanda and what are its top alternatives?
Top Alternatives to Redpanda
- Kafka Streams
It is a client library for building applications and microservices, where the input and output data are stored in Kafka clusters. It combines the simplicity of writing and deploying standard Java and Scala applications on the client side with the benefits of Kafka's server-side cluster technology. ...
- Apache NiFi
An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic. ...
- Confluent
It is a data streaming platform based on Apache Kafka: a full-scale streaming platform, capable of not only publish-and-subscribe, but also the storage and processing of data within the stream ...
- Apache Storm
Apache Storm is a free and open source distributed realtime computation system. Storm makes it easy to reliably process unbounded streams of data, doing for realtime processing what Hadoop did for batch processing. Storm has many use cases: realtime analytics, online machine learning, continuous computation, distributed RPC, ETL, and more. Storm is fast: a benchmark clocked it at over a million tuples processed per second per node. It is scalable, fault-tolerant, guarantees your data will be processed, and is easy to set up and operate. ...
- KSQL
KSQL is an open source streaming SQL engine for Apache Kafka. It provides a simple and completely interactive SQL interface for stream processing on Kafka; no need to write code in a programming language such as Java or Python. KSQL is open-source (Apache 2.0 licensed), distributed, scalable, reliable, and real-time. ...
- Kapacitor
It is a native data processing engine for InfluxDB 1.x and is an integrated component in the InfluxDB 2.0 platform. It can process both stream and batch data from InfluxDB, acting on this data in real-time via its programming language TICKscript. ...
- Heron
Heron is realtime analytics platform developed by Twitter. It is the direct successor of Apache Storm, built to be backwards compatible with Storm's topology API but with a wide array of architectural improvements. ...
- Faust
It is a stream processing library, porting the ideas from Kafka Streams to Python. It provides both stream processing and event processing, sharing similarity with tools such as Kafka Streams, Apache Spark/Storm/Samza/Flink. ...
Redpanda alternatives & related posts
related Kafka Streams posts
I have recently started using Confluent/Kafka cloud. We want to do some stream processing. As I was going through Kafka I came across Kafka Streams and KSQL. Both seem to be A good fit for stream processing. But I could not understand which one should be used and one has any advantage over another. We will be using Confluent/Kafka Managed Cloud Instance. In near future, our Producers and Consumers are running on premise and we will be interacting with Confluent Cloud.
Also, Confluent Cloud Kafka has a primitive interface; is there any better UI interface to manage Kafka Cloud Cluster?
We currently have 2 Kafka Streams topics that have records coming in continuously. We're looking into joining the 2 streams based on a key with a window of 5 minutes based on their timestamp.
Should I consider kStream - kStream join or Apache Flink window joins? Or is there any other better way to achieve this?
- Visual Data Flows using Directed Acyclic Graphs (DAGs)15
- Free (Open Source)8
- Simple-to-use7
- Reactive with back-pressure5
- Scalable horizontally as well as vertically5
- Fast prototyping4
- Bi-directional channels3
- Data provenance2
- Built-in graphical user interface2
- End-to-end security between all nodes2
- Can handle messages up to gigabytes in size2
- Hbase support1
- Kudu support1
- Hive support1
- Slack integration1
- Support for custom Processor in Java1
- Lot of articles1
- Lots of documentation1
- HA support is not full fledge2
- Memory-intensive2
related Apache NiFi posts
I am looking for the best tool to orchestrate #ETL workflows in non-Hadoop environments, mainly for regression testing use cases. Would Airflow or Apache NiFi be a good fit for this purpose?
For example, I want to run an Informatica ETL job and then run an SQL task as a dependency, followed by another task from Jira. What tool is best suited to set up such a pipeline?
Confluent
- No hypercloud lock-in3
- Dashboard for kafka insight3
- Free for casual use3
- Easily scalable2
- Zero devops2
- Proprietary1
related Confluent posts
I have recently started using Confluent/Kafka cloud. We want to do some stream processing. As I was going through Kafka I came across Kafka Streams and KSQL. Both seem to be A good fit for stream processing. But I could not understand which one should be used and one has any advantage over another. We will be using Confluent/Kafka Managed Cloud Instance. In near future, our Producers and Consumers are running on premise and we will be interacting with Confluent Cloud.
Also, Confluent Cloud Kafka has a primitive interface; is there any better UI interface to manage Kafka Cloud Cluster?
- Flexible10
- Easy setup6
- Clojure3
- Event Processing3
- Real Time2
related Apache Storm posts
Lumosity is home to the world's largest cognitive training database, a responsibility we take seriously. For most of the company's history, our analysis of user behavior and training data has been powered by an event stream--first a simple Node.js pub/sub app, then a heavyweight Ruby app with stronger durability. Both supported decent throughput and latency, but they lacked some major features supported by existing open-source alternatives: replaying existing messages (also lacking in most message queue-based solutions), scaling out many different readers for the same stream, the ability to leverage existing solutions for reading and writing, and possibly most importantly: the ability to hire someone externally who already had expertise.
We ultimately migrated to Kafka in early- to mid-2016, citing both industry trends in companies we'd talked to with similar durability and throughput needs, the extremely strong documentation and community. We pored over Kyle Kingsbury's Jepsen post (https://aphyr.com/posts/293-jepsen-Kafka), as well as Jay Kreps' follow-up (http://blog.empathybox.com/post/62279088548/a-few-notes-on-kafka-and-jepsen), talked at length with Confluent folks and community members, and still wound up running parallel systems for quite a long time, but ultimately, we've been very, very happy. Understanding the internals and proper levers takes some commitment, but it's taken very little maintenance once configured. Since then, the Confluent Platform community has grown and grown; we've gone from doing most development using custom Scala consumers and producers to being 60/40 Kafka Streams/Connects.
We originally looked into Storm / Heron , and we'd moved on from Redis pub/sub. Heron looks great, but we already had a programming model across services that was more akin to consuming a message consumers than required a topology of bolts, etc. Heron also had just come out while we were starting to migrate things, and the community momentum and direction of Kafka felt more substantial than the older Storm. If we were to start the process over again today, we might check out Pulsar , although the ecosystem is much younger.
To find out more, read our 2017 engineering blog post about the migration!
- Streamprocessing on Kafka3
- SQL syntax with windowing functions over streams2
- Easy transistion for SQL Devs0
related KSQL posts
I have recently started using Confluent/Kafka cloud. We want to do some stream processing. As I was going through Kafka I came across Kafka Streams and KSQL. Both seem to be A good fit for stream processing. But I could not understand which one should be used and one has any advantage over another. We will be using Confluent/Kafka Managed Cloud Instance. In near future, our Producers and Consumers are running on premise and we will be interacting with Confluent Cloud.
Also, Confluent Cloud Kafka has a primitive interface; is there any better UI interface to manage Kafka Cloud Cluster?
related Kapacitor posts
- Highly Customizable1
- Support most popular container environment1
- Operation friendly1
- Realtime Stream Processing1
related Heron posts
Lumosity is home to the world's largest cognitive training database, a responsibility we take seriously. For most of the company's history, our analysis of user behavior and training data has been powered by an event stream--first a simple Node.js pub/sub app, then a heavyweight Ruby app with stronger durability. Both supported decent throughput and latency, but they lacked some major features supported by existing open-source alternatives: replaying existing messages (also lacking in most message queue-based solutions), scaling out many different readers for the same stream, the ability to leverage existing solutions for reading and writing, and possibly most importantly: the ability to hire someone externally who already had expertise.
We ultimately migrated to Kafka in early- to mid-2016, citing both industry trends in companies we'd talked to with similar durability and throughput needs, the extremely strong documentation and community. We pored over Kyle Kingsbury's Jepsen post (https://aphyr.com/posts/293-jepsen-Kafka), as well as Jay Kreps' follow-up (http://blog.empathybox.com/post/62279088548/a-few-notes-on-kafka-and-jepsen), talked at length with Confluent folks and community members, and still wound up running parallel systems for quite a long time, but ultimately, we've been very, very happy. Understanding the internals and proper levers takes some commitment, but it's taken very little maintenance once configured. Since then, the Confluent Platform community has grown and grown; we've gone from doing most development using custom Scala consumers and producers to being 60/40 Kafka Streams/Connects.
We originally looked into Storm / Heron , and we'd moved on from Redis pub/sub. Heron looks great, but we already had a programming model across services that was more akin to consuming a message consumers than required a topology of bolts, etc. Heron also had just come out while we were starting to migrate things, and the community momentum and direction of Kafka felt more substantial than the older Storm. If we were to start the process over again today, we might check out Pulsar , although the ecosystem is much younger.
To find out more, read our 2017 engineering blog post about the migration!