Need advice about which tool to choose?Ask the StackShare community!
PyTorch vs TensorFlow: What are the differences?
Developers describe PyTorch as "A deep learning framework that puts Python first". PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc. On the other hand, TensorFlow is detailed as "Open Source Software Library for Machine Intelligence". TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.
PyTorch and TensorFlow belong to "Machine Learning Tools" category of the tech stack.
"Developer Friendly" is the top reason why over 2 developers like PyTorch, while over 16 developers mention "High Performance" as the leading cause for choosing TensorFlow.
PyTorch is an open source tool with 29.6K GitHub stars and 7.18K GitHub forks. Here's a link to PyTorch's open source repository on GitHub.
Uber Technologies, 9GAG, and StyleShare Inc. are some of the popular companies that use TensorFlow, whereas PyTorch is used by Suggestic, cotobox, and Depop. TensorFlow has a broader approval, being mentioned in 200 company stacks & 135 developers stacks; compared to PyTorch, which is listed in 21 company stacks and 46 developer stacks.
Pytorch is a famous tool in the realm of machine learning and it has already set up its own ecosystem. Tutorial documentation is really detailed on the official website. It can help us to create our deep learning model and allowed us to use GPU as the hardware support.
I have plenty of projects based on Pytorch and I am familiar with building deep learning models with this tool. I have used TensorFlow too but it is not dynamic. Tensorflow works on a static graph concept that means the user first has to define the computation graph of the model and then run the ML model, whereas PyTorch believes in a dynamic graph that allows defining/manipulating the graph on the go. PyTorch offers an advantage with its dynamic nature of creating graphs.
For my company, we may need to classify image data. Keras provides a high-level Machine Learning framework to achieve this. Specifically, CNN models can be compactly created with little code. Furthermore, already well-proven classifiers are available in Keras, which could be used as Transfer Learning for our use case.
We chose Keras over PyTorch, another Machine Learning framework, as our preliminary research showed that Keras is more compatible with .js. You can also convert a PyTorch model into TensorFlow.js, but it seems that Keras needs to be a middle step in between, which makes Keras a better choice.
For data analysis, we choose a Python-based framework because of Python's simplicity as well as its large community and available supporting tools. We choose PyTorch over TensorFlow for our machine learning library because it has a flatter learning curve and it is easy to debug, in addition to the fact that our team has some existing experience with PyTorch. Numpy is used for data processing because of its user-friendliness, efficiency, and integration with other tools we have chosen. Finally, we decide to include Anaconda in our dev process because of its simple setup process to provide sufficient data science environment for our purposes. The trained model then gets deployed to the back end as a pickle.
A large part of our product is training and using a machine learning model. As such, we chose one of the best coding languages, Python, for machine learning. This coding language has many packages which help build and integrate ML models. For the main portion of the machine learning, we chose PyTorch as it is one of the highest quality ML packages for Python. PyTorch allows for extreme creativity with your models while not being too complex. Also, we chose to include scikit-learn as it contains many useful functions and models which can be quickly deployed. Scikit-learn is perfect for testing models, but it does not have as much flexibility as PyTorch. We also include NumPy and Pandas as these are wonderful Python packages for data manipulation. Also for testing models and depicting data, we have chosen to use Matplotlib and seaborn, a package which creates very good looking plots. Matplotlib is the standard for displaying data in Python and ML. Whereas, seaborn is a package built on top of Matplotlib which creates very visually pleasing plots.
Pros of PyTorch
- Easy to use15
- Developer Friendly11
- Easy to debug10
- Sometimes faster than TensorFlow7
Pros of TensorFlow
- High Performance32
- Connect Research and Production19
- Deep Flexibility16
- Auto-Differentiation12
- True Portability11
- Easy to use6
- High level abstraction5
- Powerful5
Sign up to add or upvote prosMake informed product decisions
Cons of PyTorch
- Lots of code3
- It eats poop1
Cons of TensorFlow
- Hard9
- Hard to debug6
- Documentation not very helpful2