StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. AI
  3. Image & Video Models
  4. Facial Recognition
  5. OpenFace vs TensorFlow

OpenFace vs TensorFlow

OverviewDecisionsComparisonAlternatives

Overview

OpenFace
OpenFace
Stacks31
Followers104
Votes3
GitHub Stars15.4K
Forks3.6K
TensorFlow
TensorFlow
Stacks3.9K
Followers3.5K
Votes106
GitHub Stars192.3K
Forks74.9K

OpenFace vs TensorFlow: What are the differences?

# Introduction
In this comparison, we will explore the key differences between OpenFace and TensorFlow.

1. **Architecture Design**: OpenFace is a face recognition tool that uses deep neural networks with a focus on facial feature extraction and similarity calculations. On the other hand, TensorFlow is a general-purpose machine learning library that offers a wide range of tools and algorithms, including neural networks, for various tasks beyond facial recognition.
2. **Ease of Use**: OpenFace is known for its simplicity and ease of use when it comes to facial recognition tasks, making it ideal for users looking for a straightforward solution. TensorFlow, while powerful, requires more advanced knowledge and expertise in machine learning to utilize effectively.
3. **Support and Community**: TensorFlow has a larger user base and community support compared to OpenFace, which means users can find more resources, tutorials, and help when working with TensorFlow. OpenFace, being a more specialized tool, may have a smaller but dedicated community.
4. **Performance and Speed**: TensorFlow is optimized for performance and efficiency, often leveraging hardware acceleration through GPUs for faster computation. OpenFace may not always have the same level of optimization and speed due to its focus on specific facial recognition tasks.
5. **Flexibility and Customization**: TensorFlow offers more flexibility and customization options due to its extensive set of tools and algorithms, allowing users to tailor their solutions to specific needs. OpenFace, while efficient for facial recognition, may have fewer customization options for users with more specialized requirements.
6. **Deployment and Integration**: TensorFlow provides better integration capabilities with various platforms and frameworks, making it easier to deploy machine learning models in different environments. OpenFace may have limitations in terms of deployment and integration outside of its intended use case of facial recognition.

In Summary, OpenFace and TensorFlow differ in architecture design, ease of use, support and community, performance and speed, flexibility and customization, as well as deployment and integration capabilities.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on OpenFace, TensorFlow

Xi
Xi

Developer at DCSIL

Oct 11, 2020

Decided

For data analysis, we choose a Python-based framework because of Python's simplicity as well as its large community and available supporting tools. We choose PyTorch over TensorFlow for our machine learning library because it has a flatter learning curve and it is easy to debug, in addition to the fact that our team has some existing experience with PyTorch. Numpy is used for data processing because of its user-friendliness, efficiency, and integration with other tools we have chosen. Finally, we decide to include Anaconda in our dev process because of its simple setup process to provide sufficient data science environment for our purposes. The trained model then gets deployed to the back end as a pickle.

99.3k views99.3k
Comments
Adithya
Adithya

Student at PES UNIVERSITY

May 11, 2020

Needs advice

I have just started learning some basic machine learning concepts. So which of the following frameworks is better to use: Keras / TensorFlow/PyTorch. I have prior knowledge in python(and even pandas), java, js and C. It would be nice if something could point out the advantages of one over the other especially in terms of resources, documentation and flexibility. Also, could someone tell me where to find the right resources or tutorials for the above frameworks? Thanks in advance, hope you are doing well!!

107k views107k
Comments
philippe
philippe

Research & Technology & Innovation | Software & Data & Cloud | Professor in Computer Science

Sep 13, 2020

Review

Hello Amina, You need first to clearly identify the input data type (e.g. temporal data or not? seasonality or not?) and the analysis type (e.g., time series?, categories?, etc.). If you can answer these questions, that would be easier to help you identify the right tools (or Python libraries). If time series and Python, you have choice between Pendas/Statsmodels/Serima(x) (if seasonality) or deep learning techniques with Keras.

Good work, Philippe

4.64k views4.64k
Comments

Detailed Comparison

OpenFace
OpenFace
TensorFlow
TensorFlow

OpenFace is a Python and Torch implementation of face recognition with deep neural networks and is based on the CVPR 2015 paper FaceNet: A Unified Embedding for Face Recognition and Clustering by Florian Schroff, Dmitry Kalenichenko, and James Philbin at Google.

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

Detect faces with pre-trained models; Transform faces for the neural network; Use deep neural networks to reprsent or embed the face on a hypersphere; Apply favorite clustering or classification techniques to the features to complete recognition task
-
Statistics
GitHub Stars
15.4K
GitHub Stars
192.3K
GitHub Forks
3.6K
GitHub Forks
74.9K
Stacks
31
Stacks
3.9K
Followers
104
Followers
3.5K
Votes
3
Votes
106
Pros & Cons
Pros
  • 3
    Open Source
Pros
  • 32
    High Performance
  • 19
    Connect Research and Production
  • 16
    Deep Flexibility
  • 12
    Auto-Differentiation
  • 11
    True Portability
Cons
  • 9
    Hard
  • 6
    Hard to debug
  • 2
    Documentation not very helpful
Integrations
No integrations available
JavaScript
JavaScript

What are some alternatives to OpenFace, TensorFlow?

scikit-learn

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

PyTorch

PyTorch

PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.

Keras

Keras

Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/

Kubeflow

Kubeflow

The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions.

TensorFlow.js

TensorFlow.js

Use flexible and intuitive APIs to build and train models from scratch using the low-level JavaScript linear algebra library or the high-level layers API

Polyaxon

Polyaxon

An enterprise-grade open source platform for building, training, and monitoring large scale deep learning applications.

Streamlit

Streamlit

It is the app framework specifically for Machine Learning and Data Science teams. You can rapidly build the tools you need. Build apps in a dozen lines of Python with a simple API.

MLflow

MLflow

MLflow is an open source platform for managing the end-to-end machine learning lifecycle.

H2O

H2O

H2O.ai is the maker behind H2O, the leading open source machine learning platform for smarter applications and data products. H2O operationalizes data science by developing and deploying algorithms and models for R, Python and the Sparkling Water API for Spark.

PredictionIO

PredictionIO

PredictionIO is an open source machine learning server for software developers to create predictive features, such as personalization, recommendation and content discovery.

Related Comparisons

Postman
Swagger UI

Postman vs Swagger UI

Mapbox
Google Maps

Google Maps vs Mapbox

Mapbox
Leaflet

Leaflet vs Mapbox vs OpenLayers

Twilio SendGrid
Mailgun

Mailgun vs Mandrill vs SendGrid

Runscope
Postman

Paw vs Postman vs Runscope