StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. AI
  3. Development & Training Tools
  4. Machine Learning Tools
  5. MLflow vs TensorFlow

MLflow vs TensorFlow

OverviewDecisionsComparisonAlternatives

Overview

TensorFlow
TensorFlow
Stacks3.9K
Followers3.5K
Votes106
GitHub Stars192.3K
Forks74.9K
MLflow
MLflow
Stacks229
Followers524
Votes9
GitHub Stars22.8K
Forks5.0K

MLflow vs TensorFlow: What are the differences?

Key Differences between MLflow and TensorFlow

MLflow and TensorFlow are both popular open-source tools for machine learning (ML) and deep learning. While they both serve similar purposes, there are several key differences between the two:

  1. Architecture and Scope: TensorFlow is a comprehensive framework for building and deploying ML and deep learning models, offering a wide range of functionalities such as neural networks, deep learning algorithms, and distributed training. MLflow, on the other hand, is a platform-agnostic tool primarily focused on managing and tracking ML experiments, enabling easy model versioning, and promoting collaboration across teams.

  2. Ease of Use: TensorFlow provides a high-level API (such as Keras) that simplifies the process of building and training models, making it beginner-friendly. MLflow, although it does not offer its own ML library, can be integrated with various popular libraries like TensorFlow, PyTorch, and scikit-learn, allowing users to leverage their preferred ML libraries while still benefiting from MLflow's experiment tracking and management capabilities.

  3. Model Deployment: TensorFlow is well-known for its robust infrastructure for deploying ML models in production, offering tools like TensorFlow Serving and TensorFlow Lite for deploying models at scale on different platforms. In contrast, MLflow is primarily focused on managing the ML lifecycle and tracking experiments, rather than providing specific deployment tools, although it can still be integrated with deployment frameworks like Seldon and Kubeflow for managing models in production.

  4. Community Support: TensorFlow has a vast and active community, with extensive resources, tutorials, and pre-trained models available. It is also actively supported and maintained by Google. MLflow, while gaining popularity, has a relatively smaller community compared to TensorFlow. However, MLflow benefits from being open-source and has the support of Databricks, the company behind its development.

  5. Model Compatibility: TensorFlow has its own serialization format (SavedModel) that allows for efficient storage and loading of models. This format includes model weights, architecture, and the computational graph. MLflow, on the other hand, focuses on model packaging and interoperability, allowing users to package models in different formats (e.g., a Docker image or a Python function) and use them across different platforms without being tied to a specific serialization format.

  6. Integration with Other Tools: TensorFlow integrates well with various popular tools and libraries in the ML ecosystem, such as TensorFlow Extended (TFX) for building end-to-end ML pipelines, TensorFlow Probability for probabilistic modeling, and TensorFlow.js for running models directly in the web browser. MLflow, although less comprehensive in terms of its own ecosystem, can be integrated with a wide range of ML libraries and frameworks, enabling users to utilize their preferred tools while still leveraging the benefits of MLflow's experiment tracking and management features.

In summary, TensorFlow is a comprehensive ML and deep learning framework with a focus on model building, training, and deployment. MLflow, on the other hand, is a platform-agnostic tool aimed at managing the ML lifecycle and promoting collaboration. While TensorFlow provides a more all-inclusive solution, MLflow excels in experiment tracking and model packaging, offering flexibility in terms of model compatibility and integration with other tools.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on TensorFlow, MLflow

Xi
Xi

Developer at DCSIL

Oct 11, 2020

Decided

For data analysis, we choose a Python-based framework because of Python's simplicity as well as its large community and available supporting tools. We choose PyTorch over TensorFlow for our machine learning library because it has a flatter learning curve and it is easy to debug, in addition to the fact that our team has some existing experience with PyTorch. Numpy is used for data processing because of its user-friendliness, efficiency, and integration with other tools we have chosen. Finally, we decide to include Anaconda in our dev process because of its simple setup process to provide sufficient data science environment for our purposes. The trained model then gets deployed to the back end as a pickle.

99.3k views99.3k
Comments
Adithya
Adithya

Student at PES UNIVERSITY

May 11, 2020

Needs advice

I have just started learning some basic machine learning concepts. So which of the following frameworks is better to use: Keras / TensorFlow/PyTorch. I have prior knowledge in python(and even pandas), java, js and C. It would be nice if something could point out the advantages of one over the other especially in terms of resources, documentation and flexibility. Also, could someone tell me where to find the right resources or tutorials for the above frameworks? Thanks in advance, hope you are doing well!!

107k views107k
Comments
philippe
philippe

Research & Technology & Innovation | Software & Data & Cloud | Professor in Computer Science

Sep 13, 2020

Review

Hello Amina, You need first to clearly identify the input data type (e.g. temporal data or not? seasonality or not?) and the analysis type (e.g., time series?, categories?, etc.). If you can answer these questions, that would be easier to help you identify the right tools (or Python libraries). If time series and Python, you have choice between Pendas/Statsmodels/Serima(x) (if seasonality) or deep learning techniques with Keras.

Good work, Philippe

4.64k views4.64k
Comments

Detailed Comparison

TensorFlow
TensorFlow
MLflow
MLflow

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

MLflow is an open source platform for managing the end-to-end machine learning lifecycle.

-
Track experiments to record and compare parameters and results; Package ML code in a reusable, reproducible form in order to share with other data scientists or transfer to production; Manage and deploy models from a variety of ML libraries to a variety of model serving and inference platforms
Statistics
GitHub Stars
192.3K
GitHub Stars
22.8K
GitHub Forks
74.9K
GitHub Forks
5.0K
Stacks
3.9K
Stacks
229
Followers
3.5K
Followers
524
Votes
106
Votes
9
Pros & Cons
Pros
  • 32
    High Performance
  • 19
    Connect Research and Production
  • 16
    Deep Flexibility
  • 12
    Auto-Differentiation
  • 11
    True Portability
Cons
  • 9
    Hard
  • 6
    Hard to debug
  • 2
    Documentation not very helpful
Pros
  • 5
    Code First
  • 4
    Simplified Logging
Integrations
JavaScript
JavaScript
No integrations available

What are some alternatives to TensorFlow, MLflow?

scikit-learn

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

PyTorch

PyTorch

PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.

Keras

Keras

Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/

Kubeflow

Kubeflow

The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions.

TensorFlow.js

TensorFlow.js

Use flexible and intuitive APIs to build and train models from scratch using the low-level JavaScript linear algebra library or the high-level layers API

Polyaxon

Polyaxon

An enterprise-grade open source platform for building, training, and monitoring large scale deep learning applications.

Streamlit

Streamlit

It is the app framework specifically for Machine Learning and Data Science teams. You can rapidly build the tools you need. Build apps in a dozen lines of Python with a simple API.

H2O

H2O

H2O.ai is the maker behind H2O, the leading open source machine learning platform for smarter applications and data products. H2O operationalizes data science by developing and deploying algorithms and models for R, Python and the Sparkling Water API for Spark.

PredictionIO

PredictionIO

PredictionIO is an open source machine learning server for software developers to create predictive features, such as personalization, recommendation and content discovery.

Gluon

Gluon

A new open source deep learning interface which allows developers to more easily and quickly build machine learning models, without compromising performance. Gluon provides a clear, concise API for defining machine learning models using a collection of pre-built, optimized neural network components.

Related Comparisons

Postman
Swagger UI

Postman vs Swagger UI

Mapbox
Google Maps

Google Maps vs Mapbox

Mapbox
Leaflet

Leaflet vs Mapbox vs OpenLayers

Twilio SendGrid
Mailgun

Mailgun vs Mandrill vs SendGrid

Runscope
Postman

Paw vs Postman vs Runscope