Need advice about which tool to choose?Ask the StackShare community!
Kubeflow vs PyTorch: What are the differences?
Developers describe Kubeflow as "Machine Learning Toolkit for Kubernetes". The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions. On the other hand, PyTorch is detailed as "A deep learning framework that puts Python first". PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.
Kubeflow and PyTorch can be primarily classified as "Machine Learning" tools.
Kubeflow and PyTorch are both open source tools. It seems that PyTorch with 29.6K GitHub stars and 7.18K forks on GitHub has more adoption than Kubeflow with 7.04K GitHub stars and 1.03K GitHub forks.
Pytorch is a famous tool in the realm of machine learning and it has already set up its own ecosystem. Tutorial documentation is really detailed on the official website. It can help us to create our deep learning model and allowed us to use GPU as the hardware support.
I have plenty of projects based on Pytorch and I am familiar with building deep learning models with this tool. I have used TensorFlow too but it is not dynamic. Tensorflow works on a static graph concept that means the user first has to define the computation graph of the model and then run the ML model, whereas PyTorch believes in a dynamic graph that allows defining/manipulating the graph on the go. PyTorch offers an advantage with its dynamic nature of creating graphs.
For my company, we may need to classify image data. Keras provides a high-level Machine Learning framework to achieve this. Specifically, CNN models can be compactly created with little code. Furthermore, already well-proven classifiers are available in Keras, which could be used as Transfer Learning for our use case.
We chose Keras over PyTorch, another Machine Learning framework, as our preliminary research showed that Keras is more compatible with .js. You can also convert a PyTorch model into TensorFlow.js, but it seems that Keras needs to be a middle step in between, which makes Keras a better choice.
For data analysis, we choose a Python-based framework because of Python's simplicity as well as its large community and available supporting tools. We choose PyTorch over TensorFlow for our machine learning library because it has a flatter learning curve and it is easy to debug, in addition to the fact that our team has some existing experience with PyTorch. Numpy is used for data processing because of its user-friendliness, efficiency, and integration with other tools we have chosen. Finally, we decide to include Anaconda in our dev process because of its simple setup process to provide sufficient data science environment for our purposes. The trained model then gets deployed to the back end as a pickle.
Pros of Kubeflow
- System designer5
- Customisation3
- Kfp dsl3
- Google backed2
Pros of PyTorch
- Easy to use10
- Developer Friendly9
- Easy to debug7
- Sometimes faster than TensorFlow5
Sign up to add or upvote prosMake informed product decisions
Cons of Kubeflow
Cons of PyTorch
- Lots of code2