StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. DevOps
  3. Monitoring
  4. Monitoring Tools
  5. Kibana vs Prometheus

Kibana vs Prometheus

OverviewDecisionsComparisonAlternatives

Overview

Kibana
Kibana
Stacks20.6K
Followers16.4K
Votes262
GitHub Stars20.8K
Forks8.5K
Prometheus
Prometheus
Stacks4.8K
Followers3.8K
Votes239
GitHub Stars61.1K
Forks9.9K

Kibana vs Prometheus: What are the differences?

Kibana and Prometheus are both powerful tools in the realm of observability and monitoring. Let's explore the key differences between them.

  1. Data Source: Kibana is a data visualization and exploration tool primarily used with Elasticsearch data. It allows users to create charts, dashboards, and visualizations based on data stored in Elasticsearch. Prometheus, on the other hand, is a monitoring and alerting toolkit that is capable of collecting and storing time-series data. It can scrape metrics from various sources such as applications, services, and servers.

  2. Use Case: Kibana is ideal for visualizing and analyzing log data and metrics collected from Elasticsearch. It helps users gain insights and perform troubleshooting based on the data stored in Elasticsearch. Prometheus is designed for monitoring applications and infrastructure. It excels at collecting and analyzing metrics in real-time, triggering alerts based on predefined rules, and providing detailed insights into the health and performance of systems.

  3. Architecture: Kibana follows a client-server architecture, where the user interacts with the Kibana server through a web browser. It connects to Elasticsearch to query and retrieve data for visualization purposes. Prometheus has a pull-based model, where it scrapes metrics from targets that expose them via an HTTP endpoint. It stores data in its own time-series database and provides a query language (PromQL) for analysis.

  4. Integration: Kibana integrates seamlessly with the entire Elastic Stack, including Elasticsearch, Logstash, Beats, and other components. It can visualize and analyze data from different sources, making it a versatile tool for log analysis, infrastructure monitoring, and more. Prometheus is designed to work independently but can be integrated with other alerting and visualization tools. It has integrations with Grafana, which allows users to create in-depth dashboards and visualizations.

  5. Scalability: Kibana's scalability depends on the underlying infrastructure and the cluster setup of Elasticsearch, as it leverages Elasticsearch for data storage and retrieval. Prometheus scales horizontally by adding more instances to handle increasing workloads. It uses a federated model to scrape metrics from multiple instances and aggregate them for analysis.

  6. Alerting: While Kibana provides visualization capabilities, it does not have built-in alerting. Users need to rely on external tools like Elasticsearch Watcher or other monitoring solutions to set up alerts. Prometheus has robust alerting capabilities built-in. It can define alert rules based on metric thresholds and notify users in real-time when the thresholds are breached.

In summary, Kibana is a data visualization and exploration tool that works with Elasticsearch, while Prometheus is a monitoring and alerting toolkit capable of collecting and analyzing metrics from various sources. Kibana is ideal for log analysis and visualizing Elasticsearch data, whereas Prometheus is designed for real-time monitoring, alerting, and analyzing metrics from applications and infrastructure.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Kibana, Prometheus

Matt
Matt

Senior Software Engineering Manager at PayIt

May 3, 2021

DecidedonGrafanaGrafanaPrometheusPrometheusKubernetesKubernetes

Grafana and Prometheus together, running on Kubernetes , is a powerful combination. These tools are cloud-native and offer a large community and easy integrations. At PayIt we're using exporting Java application metrics using a Dropwizard metrics exporter, and our Node.js services now use the prom-client npm library to serve metrics.

1.1M views1.1M
Comments
Raja Subramaniam
Raja Subramaniam

Aug 27, 2019

Needs adviceonPrometheusPrometheusKubernetesKubernetesSysdigSysdig

We have Prometheus as a monitoring engine as a part of our stack which contains Kubernetes cluster, container images and other open source tools. Also, I am aware that Sysdig can be integrated with Prometheus but I really wanted to know whether Sysdig or sysdig+prometheus will make better monitoring solution.

779k views779k
Comments
matteo1989it
matteo1989it

Jun 26, 2019

ReviewonKibanaKibanaGrafanaGrafanaElasticsearchElasticsearch

I use both Kibana and Grafana on my workplace: Kibana for logging and Grafana for monitoring. Since you already work with Elasticsearch, I think Kibana is the safest choice in terms of ease of use and variety of messages it can manage, while Grafana has still (in my opinion) a strong link to metrics

757k views757k
Comments

Detailed Comparison

Kibana
Kibana
Prometheus
Prometheus

Kibana is an open source (Apache Licensed), browser based analytics and search dashboard for Elasticsearch. Kibana is a snap to setup and start using. Kibana strives to be easy to get started with, while also being flexible and powerful, just like Elasticsearch.

Prometheus is a systems and service monitoring system. It collects metrics from configured targets at given intervals, evaluates rule expressions, displays the results, and can trigger alerts if some condition is observed to be true.

Flexible analytics and visualization platform;Real-time summary and charting of streaming data;Intuitive interface for a variety of users;Instant sharing and embedding of dashboards
Dimensional data; Powerful queries; Great visualization; Efficient storage; Precise alerting; Simple operation
Statistics
GitHub Stars
20.8K
GitHub Stars
61.1K
GitHub Forks
8.5K
GitHub Forks
9.9K
Stacks
20.6K
Stacks
4.8K
Followers
16.4K
Followers
3.8K
Votes
262
Votes
239
Pros & Cons
Pros
  • 88
    Easy to setup
  • 65
    Free
  • 45
    Can search text
  • 21
    Has pie chart
  • 13
    X-axis is not restricted to timestamp
Cons
  • 7
    Unintuituve
  • 4
    Elasticsearch is huge
  • 4
    Works on top of elastic only
  • 3
    Hardweight UI
Pros
  • 47
    Powerful easy to use monitoring
  • 38
    Flexible query language
  • 32
    Dimensional data model
  • 27
    Alerts
  • 23
    Active and responsive community
Cons
  • 12
    Just for metrics
  • 6
    Bad UI
  • 6
    Needs monitoring to access metrics endpoints
  • 4
    Not easy to configure and use
  • 3
    Supports only active agents
Integrations
Logstash
Logstash
Elasticsearch
Elasticsearch
Beats
Beats
Grafana
Grafana

What are some alternatives to Kibana, Prometheus?

Grafana

Grafana

Grafana is a general purpose dashboard and graph composer. It's focused on providing rich ways to visualize time series metrics, mainly though graphs but supports other ways to visualize data through a pluggable panel architecture. It currently has rich support for for Graphite, InfluxDB and OpenTSDB. But supports other data sources via plugins.

Nagios

Nagios

Nagios is a host/service/network monitoring program written in C and released under the GNU General Public License.

Netdata

Netdata

Netdata collects metrics per second & presents them in low-latency dashboards. It's designed to run on all of your physical & virtual servers, cloud deployments, Kubernetes clusters & edge/IoT devices, to monitor systems, containers & apps

Zabbix

Zabbix

Zabbix is a mature and effortless enterprise-class open source monitoring solution for network monitoring and application monitoring of millions of metrics.

Sensu

Sensu

Sensu is the future-proof solution for multi-cloud monitoring at scale. The Sensu monitoring event pipeline empowers businesses to automate their monitoring workflows and gain deep visibility into their multi-cloud environments.

Graphite

Graphite

Graphite does two things: 1) Store numeric time-series data and 2) Render graphs of this data on demand

Lumigo

Lumigo

Lumigo is an observability platform built for developers, unifying distributed tracing with payload data, log management, and real-time metrics to help you deeply understand and troubleshoot your systems.

StatsD

StatsD

It is a network daemon that runs on the Node.js platform and listens for statistics, like counters and timers, sent over UDP or TCP and sends aggregates to one or more pluggable backend services (e.g., Graphite).

Jaeger

Jaeger

Jaeger, a Distributed Tracing System

Telegraf

Telegraf

It is an agent for collecting, processing, aggregating, and writing metrics. Design goals are to have a minimal memory footprint with a plugin system so that developers in the community can easily add support for collecting metrics.

Related Comparisons

GitHub
Bitbucket

Bitbucket vs GitHub vs GitLab

GitHub
Bitbucket

AWS CodeCommit vs Bitbucket vs GitHub

Kubernetes
Rancher

Docker Swarm vs Kubernetes vs Rancher

gulp
Grunt

Grunt vs Webpack vs gulp

Graphite
Kibana

Grafana vs Graphite vs Kibana