Need advice about which tool to choose?Ask the StackShare community!

Keras

1.1K
1.1K
+ 1
22
PyTorch

1.5K
1.5K
+ 1
43
TensorFlow

3.8K
3.5K
+ 1
106
Decisions about Keras, PyTorch, and TensorFlow

Pytorch is a famous tool in the realm of machine learning and it has already set up its own ecosystem. Tutorial documentation is really detailed on the official website. It can help us to create our deep learning model and allowed us to use GPU as the hardware support.

I have plenty of projects based on Pytorch and I am familiar with building deep learning models with this tool. I have used TensorFlow too but it is not dynamic. Tensorflow works on a static graph concept that means the user first has to define the computation graph of the model and then run the ML model, whereas PyTorch believes in a dynamic graph that allows defining/manipulating the graph on the go. PyTorch offers an advantage with its dynamic nature of creating graphs.

See more
Fabian Ulmer
Software Developer at Hestia · | 3 upvotes · 52K views

For my company, we may need to classify image data. Keras provides a high-level Machine Learning framework to achieve this. Specifically, CNN models can be compactly created with little code. Furthermore, already well-proven classifiers are available in Keras, which could be used as Transfer Learning for our use case.

We chose Keras over PyTorch, another Machine Learning framework, as our preliminary research showed that Keras is more compatible with .js. You can also convert a PyTorch model into TensorFlow.js, but it seems that Keras needs to be a middle step in between, which makes Keras a better choice.

See more
Xi Huang
Developer at University of Toronto · | 8 upvotes · 94.8K views

For data analysis, we choose a Python-based framework because of Python's simplicity as well as its large community and available supporting tools. We choose PyTorch over TensorFlow for our machine learning library because it has a flatter learning curve and it is easy to debug, in addition to the fact that our team has some existing experience with PyTorch. Numpy is used for data processing because of its user-friendliness, efficiency, and integration with other tools we have chosen. Finally, we decide to include Anaconda in our dev process because of its simple setup process to provide sufficient data science environment for our purposes. The trained model then gets deployed to the back end as a pickle.

See more

A large part of our product is training and using a machine learning model. As such, we chose one of the best coding languages, Python, for machine learning. This coding language has many packages which help build and integrate ML models. For the main portion of the machine learning, we chose PyTorch as it is one of the highest quality ML packages for Python. PyTorch allows for extreme creativity with your models while not being too complex. Also, we chose to include scikit-learn as it contains many useful functions and models which can be quickly deployed. Scikit-learn is perfect for testing models, but it does not have as much flexibility as PyTorch. We also include NumPy and Pandas as these are wonderful Python packages for data manipulation. Also for testing models and depicting data, we have chosen to use Matplotlib and seaborn, a package which creates very good looking plots. Matplotlib is the standard for displaying data in Python and ML. Whereas, seaborn is a package built on top of Matplotlib which creates very visually pleasing plots.

See more
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of Keras
Pros of PyTorch
Pros of TensorFlow
  • 8
    Quality Documentation
  • 7
    Supports Tensorflow and Theano backends
  • 7
    Easy and fast NN prototyping
  • 15
    Easy to use
  • 11
    Developer Friendly
  • 10
    Easy to debug
  • 7
    Sometimes faster than TensorFlow
  • 32
    High Performance
  • 19
    Connect Research and Production
  • 16
    Deep Flexibility
  • 12
    Auto-Differentiation
  • 11
    True Portability
  • 6
    Easy to use
  • 5
    High level abstraction
  • 5
    Powerful

Sign up to add or upvote prosMake informed product decisions

Cons of Keras
Cons of PyTorch
Cons of TensorFlow
  • 4
    Hard to debug
  • 3
    Lots of code
  • 1
    It eats poop
  • 9
    Hard
  • 6
    Hard to debug
  • 2
    Documentation not very helpful

Sign up to add or upvote consMake informed product decisions

- No public GitHub repository available -

What is Keras?

Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/

What is PyTorch?

PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.

What is TensorFlow?

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

Need advice about which tool to choose?Ask the StackShare community!

What companies use Keras?
What companies use PyTorch?
What companies use TensorFlow?

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Keras?
What tools integrate with PyTorch?
What tools integrate with TensorFlow?

Sign up to get full access to all the tool integrationsMake informed product decisions

Blog Posts

TensorFlowPySpark+2
1
767
PythonDockerKubernetes+14
12
2651
Dec 4 2019 at 8:01PM

Pinterest

KubernetesJenkinsTensorFlow+4
5
3339
What are some alternatives to Keras, PyTorch, and TensorFlow?
MXNet
A deep learning framework designed for both efficiency and flexibility. It allows you to mix symbolic and imperative programming to maximize efficiency and productivity. At its core, it contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly.
Postman
It is the only complete API development environment, used by nearly five million developers and more than 100,000 companies worldwide.
Postman
It is the only complete API development environment, used by nearly five million developers and more than 100,000 companies worldwide.
Stack Overflow
Stack Overflow is a question and answer site for professional and enthusiast programmers. It's built and run by you as part of the Stack Exchange network of Q&A sites. With your help, we're working together to build a library of detailed answers to every question about programming.
Google Maps
Create rich applications and stunning visualisations of your data, leveraging the comprehensiveness, accuracy, and usability of Google Maps and a modern web platform that scales as you grow.
See all alternatives