StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Container Registry
  4. Container Tools
  5. Docker Swarm vs LXD

Docker Swarm vs LXD

OverviewDecisionsComparisonAlternatives

Overview

Docker Swarm
Docker Swarm
Stacks779
Followers990
Votes282
LXD
LXD
Stacks104
Followers194
Votes68

Docker Swarm vs LXD: What are the differences?

## Introduction
Docker Swarm and LXD are both containerization technologies that serve different purposes and have distinct features. Understanding the key differences between Docker Swarm and LXD is crucial for choosing the right tool for container management.

1. **Orchestration vs Hypervisor**: Docker Swarm is primarily an orchestration tool used to manage multiple Docker containers across a cluster of machines, providing automation and scalability for containerized applications. In contrast, LXD is a hypervisor that offers lightweight, full system virtualization, similar to traditional virtual machines but with higher efficiency and performance.

2. **Containerization vs Virtualization**: Docker Swarm focuses on containerization, where applications and their dependencies are packaged into containers that share the host OS kernel, leading to lightweight and portable deployments. On the other hand, LXD emphasizes virtualization, allowing running multiple isolated Linux systems on a single host, providing stronger isolation between workloads.

3. **Use Cases**: Docker Swarm is suitable for deploying and managing complex applications that require orchestration, scalability, and high availability, making it ideal for microservices architectures and cloud-native applications. LXD, on the other hand, is more suited for scenarios where strict isolation and performance are critical, such as in-edge computing, development environments, and testing setups.

4. **Resource Overhead**: Docker Swarm typically has a lower resource overhead compared to LXD because of its lightweight nature and shared kernel approach. LXD, being a hypervisor, incurs more resource overhead as it runs multiple virtualized instances with separate kernels, resulting in a slight performance impact.

5. **Ecosystem Integration**: Docker Swarm is deeply integrated with the Docker ecosystem, allowing seamless interaction with existing Docker tools, registries, and images, simplifying deployment and management processes. LXD, while still compatible with Docker images, has a more standalone nature and is closely aligned with the LXC (Linux Containers) ecosystem.

6. **Networking Capabilities**: Docker Swarm provides built-in networking capabilities through Docker's networking plugins, allowing easy configuration of network connections between containers and services within the Swarm cluster. LXD, on the other hand, relies on standard Linux networking features and tools, offering more manual control and flexibility in setting up networking configurations for virtual instances.

In Summary, understanding the differences between Docker Swarm and LXD is essential for selecting the appropriate containerization or virtualization solution based on specific requirements such as orchestration needs, resource utilization, use cases, ecosystem compatibility, and networking preferences.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Docker Swarm, LXD

Simon
Simon

Senior Fullstack Developer at QUANTUSflow Software GmbH

Apr 27, 2020

DecidedonGitHubGitHubGitHub PagesGitHub PagesMarkdownMarkdown

Our whole DevOps stack consists of the following tools:

  • @{GitHub}|tool:27| (incl. @{GitHub Pages}|tool:683|/@{Markdown}|tool:1147| for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively @{Git}|tool:1046| as revision control system
  • @{SourceTree}|tool:1599| as @{Git}|tool:1046| GUI
  • @{Visual Studio Code}|tool:4202| as IDE
  • @{CircleCI}|tool:190| for continuous integration (automatize development process)
  • @{Prettier}|tool:7035| / @{TSLint}|tool:5561| / @{ESLint}|tool:3337| as code linter
  • @{SonarQube}|tool:2638| as quality gate
  • @{Docker}|tool:586| as container management (incl. @{Docker Compose}|tool:3136| for multi-container application management)
  • @{VirtualBox}|tool:774| for operating system simulation tests
  • @{Kubernetes}|tool:1885| as cluster management for docker containers
  • @{Heroku}|tool:133| for deploying in test environments
  • @{nginx}|tool:1052| as web server (preferably used as facade server in production environment)
  • @{SSLMate}|tool:2752| (using @{OpenSSL}|tool:3091|) for certificate management
  • @{Amazon EC2}|tool:18| (incl. @{Amazon S3}|tool:25|) for deploying in stage (production-like) and production environments
  • @{PostgreSQL}|tool:1028| as preferred database system
  • @{Redis}|tool:1031| as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
12.8M views12.8M
Comments
Florian
Florian

IT DevOp at Agitos GmbH

Oct 22, 2019

Decided

lxd/lxc and Docker aren't congruent so this comparison needs a more detailed look; but in short I can say: the lxd-integrated administration of storage including zfs with its snapshot capabilities as well as the system container (multi-process) approach of lxc vs. the limited single-process container approach of Docker is the main reason I chose lxd over Docker.

482k views482k
Comments

Detailed Comparison

Docker Swarm
Docker Swarm
LXD
LXD

Swarm serves the standard Docker API, so any tool which already communicates with a Docker daemon can use Swarm to transparently scale to multiple hosts: Dokku, Compose, Krane, Deis, DockerUI, Shipyard, Drone, Jenkins... and, of course, the Docker client itself.

LXD isn't a rewrite of LXC, in fact it's building on top of LXC to provide a new, better user experience. Under the hood, LXD uses LXC through liblxc and its Go binding to create and manage the containers. It's basically an alternative to LXC's tools and distribution template system with the added features that come from being controllable over the network.

Statistics
Stacks
779
Stacks
104
Followers
990
Followers
194
Votes
282
Votes
68
Pros & Cons
Pros
  • 55
    Docker friendly
  • 46
    Easy to setup
  • 40
    Standard Docker API
  • 38
    Easy to use
  • 23
    Native
Cons
  • 9
    Low adoption
Pros
  • 10
    More simple
  • 8
    Best
  • 8
    API
  • 8
    Open Source
  • 7
    Cluster
Integrations
Docker
Docker
LXC
LXC

What are some alternatives to Docker Swarm, LXD?

Docker

Docker

The Docker Platform is the industry-leading container platform for continuous, high-velocity innovation, enabling organizations to seamlessly build and share any application — from legacy to what comes next — and securely run them anywhere

Kubernetes

Kubernetes

Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions.

Rancher

Rancher

Rancher is an open source container management platform that includes full distributions of Kubernetes, Apache Mesos and Docker Swarm, and makes it simple to operate container clusters on any cloud or infrastructure platform.

Docker Compose

Docker Compose

With Compose, you define a multi-container application in a single file, then spin your application up in a single command which does everything that needs to be done to get it running.

Tutum

Tutum

Tutum lets developers easily manage and run lightweight, portable, self-sufficient containers from any application. AWS-like control, Heroku-like ease. The same container that a developer builds and tests on a laptop can run at scale in Tutum.

Portainer

Portainer

It is a universal container management tool. It works with Kubernetes, Docker, Docker Swarm and Azure ACI. It allows you to manage containers without needing to know platform-specific code.

Codefresh

Codefresh

Automate and parallelize testing. Codefresh allows teams to spin up on-demand compositions to run unit and integration tests as part of the continuous integration process. Jenkins integration allows more complex pipelines.

LXC

LXC

LXC is a userspace interface for the Linux kernel containment features. Through a powerful API and simple tools, it lets Linux users easily create and manage system or application containers.

CAST.AI

CAST.AI

It is an AI-driven cloud optimization platform for Kubernetes. Instantly cut your cloud bill, prevent downtime, and 10X the power of DevOps.

k3s

k3s

Certified Kubernetes distribution designed for production workloads in unattended, resource-constrained, remote locations or inside IoT appliances. Supports something as small as a Raspberry Pi or as large as an AWS a1.4xlarge 32GiB server.

Related Comparisons

GitHub
Bitbucket

Bitbucket vs GitHub vs GitLab

GitHub
Bitbucket

AWS CodeCommit vs Bitbucket vs GitHub

Kubernetes
Rancher

Docker Swarm vs Kubernetes vs Rancher

gulp
Grunt

Grunt vs Webpack vs gulp

Graphite
Kibana

Grafana vs Graphite vs Kibana