StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. DevOps
  3. Build Automation
  4. Infrastructure Build Tools
  5. AWS CloudFormation vs Salt

AWS CloudFormation vs Salt

OverviewDecisionsComparisonAlternatives

Overview

AWS CloudFormation
AWS CloudFormation
Stacks1.6K
Followers1.3K
Votes88
Salt
Salt
Stacks410
Followers449
Votes165
GitHub Stars14.9K
Forks5.6K

AWS CloudFormation vs Salt: What are the differences?

Introduction

When comparing AWS CloudFormation and Salt, both are tools used for managing and provisioning infrastructure, but they differ in various aspects. Here are the key differences between AWS CloudFormation and Salt:

1. Configuration Management vs. Infrastructure as Code: Salt primarily focuses on configuration management, allowing users to automate the configuration of servers and software environments. On the other hand, AWS CloudFormation is designed for infrastructure as code, enabling users to define and provision AWS resources in a declarative template format.

2. Target Scope: Salt is particularly suited for managing and configuring multiple servers or nodes simultaneously, making it ideal for large-scale deployments. In contrast, AWS CloudFormation is more focused on provisioning and managing AWS resources in a consistent and predictable manner.

3. Agent-based vs. Serverless: Salt relies on an agent-based architecture where the Salt minion runs on each target server to communicate with the Salt master for configuration management tasks. In contrast, AWS CloudFormation follows a serverless model where users define infrastructure in templates, and AWS handles the provisioning and orchestration without the need for agents.

4. Extensibility and Customization: Salt offers extensive flexibility and customization through modules, states, and pillars, allowing users to tailor configurations to specific requirements. AWS CloudFormation, while powerful, may have limitations in terms of customization compared to Salt's highly extensible nature.

5. Cloud Provider Agnostic vs. AWS-specific: Salt is cloud provider agnostic and can be used to manage infrastructure across multiple cloud platforms. AWS CloudFormation, as the name suggests, is specific to AWS and is used for managing resources within the AWS ecosystem.

6. Learning Curve: Salt may have a steeper learning curve for beginners due to its rich feature set and configuration options, whereas AWS CloudFormation provides a more straightforward approach to provisioning resources in AWS with its template-based infrastructure management.

In Summary, when comparing AWS CloudFormation and Salt, the key differences lie in their focus on configuration management vs. infrastructure as code, target scope, architecture, extensibility, cloud provider specificity, and learning curve.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on AWS CloudFormation, Salt

Timothy
Timothy

SRE

Mar 20, 2020

Decided

I personally am not a huge fan of vendor lock in for multiple reasons:

  • I've seen cost saving moves to the cloud end up costing a fortune and trapping companies due to over utilization of cloud specific features.
  • I've seen S3 failures nearly take down half the internet.
  • I've seen companies get stuck in the cloud because they aren't built cloud agnostic.

I choose to use terraform for my cloud provisioning for these reasons:

  • It's cloud agnostic so I can use it no matter where I am.
  • It isn't difficult to use and uses a relatively easy to read language.
  • It tests infrastructure before running it, and enables me to see and keep changes up to date.
  • It runs from the same CLI I do most of my CM work from.
385k views385k
Comments
Daniel
Daniel

May 4, 2020

Decided

Because Pulumi uses real programming languages, you can actually write abstractions for your infrastructure code, which is incredibly empowering. You still 'describe' your desired state, but by having a programming language at your fingers, you can factor out patterns, and package it up for easier consumption.

426k views426k
Comments
Sergey
Sergey

Contractor at Adaptive

Apr 17, 2020

Decided

Overview

We use Terraform to manage AWS cloud environment for the project. It is pretty complex, largely static, security-focused, and constantly evolving.

Terraform provides descriptive (declarative) way of defining the target configuration, where it can work out the dependencies between configuration elements and apply differences without re-provisioning the entire cloud stack.

Advantages

Terraform is vendor-neutral in a way that it is using a common configuration language (HCL) with plugins (providers) for multiple cloud and service providers.

Terraform keeps track of the previous state of the deployment and applies incremental changes, resulting in faster deployment times.

Terraform allows us to share reusable modules between projects. We have built an impressive library of modules internally, which makes it very easy to assemble a new project from pre-fabricated building blocks.

Disadvantages

Software is imperfect, and Terraform is no exception. Occasionally we hit annoying bugs that we have to work around. The interaction with any underlying APIs is encapsulated inside 3rd party Terraform providers, and any bug fixes or new features require a provider release. Some providers have very poor coverage of the underlying APIs.

Terraform is not great for managing highly dynamic parts of cloud environments. That part is better delegated to other tools or scripts.

Terraform state may go out of sync with the target environment or with the source configuration, which often results in painful reconciliation.

426k views426k
Comments

Detailed Comparison

AWS CloudFormation
AWS CloudFormation
Salt
Salt

You can use AWS CloudFormation’s sample templates or create your own templates to describe the AWS resources, and any associated dependencies or runtime parameters, required to run your application. You don’t need to figure out the order in which AWS services need to be provisioned or the subtleties of how to make those dependencies work.

Salt is a new approach to infrastructure management. Easy enough to get running in minutes, scalable enough to manage tens of thousands of servers, and fast enough to communicate with them in seconds. Salt delivers a dynamic communication bus for infrastructures that can be used for orchestration, remote execution, configuration management and much more.

AWS CloudFormation comes with the following ready-to-run sample templates: WordPress (blog),Tracks (project tracking), Gollum (wiki used by GitHub), Drupal (content management), Joomla (content management), Insoshi (social apps), Redmine (project mgmt);No Need to Reinvent the Wheel – A template can be used repeatedly to create identical copies of the same stack (or to use as a foundation to start a new stack);Transparent and Open – Templates are simple JSON formatted text files that can be placed under your normal source control mechanisms, stored in private or public locations such as Amazon S3 and exchanged via email.;Declarative and Flexible – To create the infrastructure you want, you enumerate what AWS resources, configuration values and interconnections you need in a template and then let AWS CloudFormation do the rest with a few simple clicks in the AWS Management Console, via the command line tools or by calling the APIs.
Remote execution is the core function of Salt. Running pre-defined or arbitrary commands on remote hosts.;Salt modules are the core of remote execution. They provide functionality such as installing packages, restarting a service, running a remote command, transferring files, and infinitely more;Building on the remote execution core is a robust and flexible configuration management framework. Execution happens on the minions allowing effortless, simultaneous configuration of tens of thousands of hosts.
Statistics
GitHub Stars
-
GitHub Stars
14.9K
GitHub Forks
-
GitHub Forks
5.6K
Stacks
1.6K
Stacks
410
Followers
1.3K
Followers
449
Votes
88
Votes
165
Pros & Cons
Pros
  • 43
    Automates infrastructure deployments
  • 21
    Declarative infrastructure and deployment
  • 13
    No more clicking around
  • 3
    Any Operative System you want
  • 3
    Infrastructure as code
Cons
  • 4
    Brittle
  • 2
    No RBAC and policies in templates
Pros
  • 47
    Flexible
  • 30
    Easy
  • 27
    Remote execution
  • 24
    Enormously flexible
  • 12
    Great plugin API
Cons
  • 1
    Dangerous
  • 1
    Bloated
  • 1
    No immutable infrastructure

What are some alternatives to AWS CloudFormation, Salt?

Ansible

Ansible

Ansible is an IT automation tool. It can configure systems, deploy software, and orchestrate more advanced IT tasks such as continuous deployments or zero downtime rolling updates. Ansible’s goals are foremost those of simplicity and maximum ease of use.

Chef

Chef

Chef enables you to manage and scale cloud infrastructure with no downtime or interruptions. Freely move applications and configurations from one cloud to another. Chef is integrated with all major cloud providers including Amazon EC2, VMWare, IBM Smartcloud, Rackspace, OpenStack, Windows Azure, HP Cloud, Google Compute Engine, Joyent Cloud and others.

Terraform

Terraform

With Terraform, you describe your complete infrastructure as code, even as it spans multiple service providers. Your servers may come from AWS, your DNS may come from CloudFlare, and your database may come from Heroku. Terraform will build all these resources across all these providers in parallel.

Capistrano

Capistrano

Capistrano is a remote server automation tool. It supports the scripting and execution of arbitrary tasks, and includes a set of sane-default deployment workflows.

Puppet Labs

Puppet Labs

Puppet is an automated administrative engine for your Linux, Unix, and Windows systems and performs administrative tasks (such as adding users, installing packages, and updating server configurations) based on a centralized specification.

Fabric

Fabric

Fabric is a Python (2.5-2.7) library and command-line tool for streamlining the use of SSH for application deployment or systems administration tasks. It provides a basic suite of operations for executing local or remote shell commands (normally or via sudo) and uploading/downloading files, as well as auxiliary functionality such as prompting the running user for input, or aborting execution.

AWS OpsWorks

AWS OpsWorks

Start from templates for common technologies like Ruby, Node.JS, PHP, and Java, or build your own using Chef recipes to install software packages and perform any task that you can script. AWS OpsWorks can scale your application using automatic load-based or time-based scaling and maintain the health of your application by detecting failed instances and replacing them. You have full control of deployments and automation of each component

Packer

Packer

Packer automates the creation of any type of machine image. It embraces modern configuration management by encouraging you to use automated scripts to install and configure the software within your Packer-made images.

Scalr

Scalr

Scalr is a remote state & operations backend for Terraform with access controls, policy as code, and many quality of life features.

Pulumi

Pulumi

Pulumi is a cloud development platform that makes creating cloud programs easy and productive. Skip the YAML and just write code. Pulumi is multi-language, multi-cloud and fully extensible in both its engine and ecosystem of packages.

Related Comparisons

GitHub
Bitbucket

Bitbucket vs GitHub vs GitLab

GitHub
Bitbucket

AWS CodeCommit vs Bitbucket vs GitHub

Kubernetes
Rancher

Docker Swarm vs Kubernetes vs Rancher

gulp
Grunt

Grunt vs Webpack vs gulp

Graphite
Kibana

Grafana vs Graphite vs Kibana