Alternatives to Proxmox VE logo

Alternatives to Proxmox VE

XenServer, OpenStack, KVM, VirtualBox, and JavaScript are the most popular alternatives and competitors to Proxmox VE.
325
321
+ 1
41

What is Proxmox VE and what are its top alternatives?

It is a complete open-source platform for all-inclusive enterprise virtualization that tightly integrates KVM hypervisor and LXC containers, software-defined storage and networking functionality on a single platform, and easily manages high availability clusters and disaster recovery tools with the built-in web management interface.
Proxmox VE is a tool in the Virtualization Platform category of a tech stack.

Top Alternatives to Proxmox VE

  • XenServer
    XenServer

    It is a leading virtualization management platform optimized for application, desktop and server virtualization infrastructures. It is used in the world's largest clouds and enterprises. ...

  • OpenStack
    OpenStack

    OpenStack is a cloud operating system that controls large pools of compute, storage, and networking resources throughout a datacenter, all managed through a dashboard that gives administrators control while empowering their users to provision resources through a web interface. ...

  • KVM
    KVM

    KVM (for Kernel-based Virtual Machine) is a full virtualization solution for Linux on x86 hardware containing virtualization extensions (Intel VT or AMD-V). ...

  • VirtualBox
    VirtualBox

    VirtualBox is a powerful x86 and AMD64/Intel64 virtualization product for enterprise as well as home use. Not only is VirtualBox an extremely feature rich, high performance product for enterprise customers, it is also the only professional solution that is freely available as Open Source Software under the terms of the GNU General Public License (GPL) version 2. ...

  • JavaScript
    JavaScript

    JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles. ...

  • Git
    Git

    Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...

  • GitHub
    GitHub

    GitHub is the best place to share code with friends, co-workers, classmates, and complete strangers. Over three million people use GitHub to build amazing things together. ...

  • Python
    Python

    Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...

Proxmox VE alternatives & related posts

XenServer logo

XenServer

54
57
0
An open source virtualization platform
54
57
+ 1
0
PROS OF XENSERVER
    Be the first to leave a pro
    CONS OF XENSERVER
      Be the first to leave a con

      related XenServer posts

      OpenStack logo

      OpenStack

      782
      1.1K
      131
      Open source software for building private and public clouds
      782
      1.1K
      + 1
      131
      PROS OF OPENSTACK
      • 57
        Private cloud
      • 38
        Avoid vendor lock-in
      • 22
        Flexible in use
      • 6
        Industry leader
      • 4
        Supported by many companies in top500
      • 4
        Robust architecture
      CONS OF OPENSTACK
        Be the first to leave a con

        related OpenStack posts

        Shared insights
        on
        UbuntuUbuntuOpenStackOpenStackCentOSCentOS
        at

        Hello guys

        I am confused between choosing CentOS7 or centos8 for OpenStack tripleo undercloud deployment. Which one should I use? There is another option to use OpenStack, Ubuntu, or MicroStack.

        We wanted to use this deployment to build our home cloud or private cloud infrastructure. I heard that centOS is always the best choice through a little research, but still not sure. As centos8 from Redhat is not supported for OpenStack tripleo deployments anymore, I had to upgrade to CentosStream.

        See more
        KVM logo

        KVM

        181
        230
        8
        Kernel-based Virtual Machine is a full virtualization solution for Linux
        181
        230
        + 1
        8
        PROS OF KVM
        • 4
          No license issues
        • 2
          Very fast
        • 2
          Flexible network options
        CONS OF KVM
          Be the first to leave a con

          related KVM posts

          VirtualBox logo

          VirtualBox

          30.6K
          25.2K
          1.1K
          Run nearly any operating system on a single machine and to freely switch between OS instances running simultaneously
          30.6K
          25.2K
          + 1
          1.1K
          PROS OF VIRTUALBOX
          • 358
            Free
          • 231
            Easy
          • 169
            Default for vagrant
          • 110
            Fast
          • 73
            Starts quickly
          • 45
            Open-source
          • 42
            Running in background
          • 41
            Simple, yet comprehensive
          • 27
            Default for boot2docker
          • 22
            Extensive customization
          • 3
            Free to use
          • 2
            Mouse integration
          • 2
            Easy tool
          • 2
            Cross-platform
          CONS OF VIRTUALBOX
            Be the first to leave a con

            related VirtualBox posts

            Simon Reymann
            Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 10.4M views

            Our whole DevOps stack consists of the following tools:

            • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
            • Respectively Git as revision control system
            • SourceTree as Git GUI
            • Visual Studio Code as IDE
            • CircleCI for continuous integration (automatize development process)
            • Prettier / TSLint / ESLint as code linter
            • SonarQube as quality gate
            • Docker as container management (incl. Docker Compose for multi-container application management)
            • VirtualBox for operating system simulation tests
            • Kubernetes as cluster management for docker containers
            • Heroku for deploying in test environments
            • nginx as web server (preferably used as facade server in production environment)
            • SSLMate (using OpenSSL) for certificate management
            • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
            • PostgreSQL as preferred database system
            • Redis as preferred in-memory database/store (great for caching)

            The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

            • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
            • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
            • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
            • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
            • Scalability: All-in-one framework for distributed systems.
            • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
            See more
            Tymoteusz Paul
            Devops guy at X20X Development LTD · | 23 upvotes · 9.3M views

            Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

            It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

            I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

            We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

            If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

            The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

            Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

            See more
            JavaScript logo

            JavaScript

            357.3K
            271.7K
            8.1K
            Lightweight, interpreted, object-oriented language with first-class functions
            357.3K
            271.7K
            + 1
            8.1K
            PROS OF JAVASCRIPT
            • 1.7K
              Can be used on frontend/backend
            • 1.5K
              It's everywhere
            • 1.2K
              Lots of great frameworks
            • 897
              Fast
            • 745
              Light weight
            • 425
              Flexible
            • 392
              You can't get a device today that doesn't run js
            • 286
              Non-blocking i/o
            • 237
              Ubiquitousness
            • 191
              Expressive
            • 55
              Extended functionality to web pages
            • 49
              Relatively easy language
            • 46
              Executed on the client side
            • 30
              Relatively fast to the end user
            • 25
              Pure Javascript
            • 21
              Functional programming
            • 15
              Async
            • 13
              Full-stack
            • 12
              Setup is easy
            • 12
              Its everywhere
            • 12
              Future Language of The Web
            • 11
              Because I love functions
            • 11
              JavaScript is the New PHP
            • 10
              Like it or not, JS is part of the web standard
            • 9
              Expansive community
            • 9
              Everyone use it
            • 9
              Can be used in backend, frontend and DB
            • 9
              Easy
            • 8
              Most Popular Language in the World
            • 8
              Powerful
            • 8
              Can be used both as frontend and backend as well
            • 8
              For the good parts
            • 8
              No need to use PHP
            • 8
              Easy to hire developers
            • 7
              Agile, packages simple to use
            • 7
              Love-hate relationship
            • 7
              Photoshop has 3 JS runtimes built in
            • 7
              Evolution of C
            • 7
              It's fun
            • 7
              Hard not to use
            • 7
              Versitile
            • 7
              Its fun and fast
            • 7
              Nice
            • 7
              Popularized Class-Less Architecture & Lambdas
            • 7
              Supports lambdas and closures
            • 6
              It let's me use Babel & Typescript
            • 6
              Can be used on frontend/backend/Mobile/create PRO Ui
            • 6
              1.6K Can be used on frontend/backend
            • 6
              Client side JS uses the visitors CPU to save Server Res
            • 6
              Easy to make something
            • 5
              Clojurescript
            • 5
              Promise relationship
            • 5
              Stockholm Syndrome
            • 5
              Function expressions are useful for callbacks
            • 5
              Scope manipulation
            • 5
              Everywhere
            • 5
              Client processing
            • 5
              What to add
            • 4
              Because it is so simple and lightweight
            • 4
              Only Programming language on browser
            • 1
              Test
            • 1
              Hard to learn
            • 1
              Test2
            • 1
              Not the best
            • 1
              Easy to understand
            • 1
              Subskill #4
            • 1
              Easy to learn
            • 0
              Hard 彤
            CONS OF JAVASCRIPT
            • 22
              A constant moving target, too much churn
            • 20
              Horribly inconsistent
            • 15
              Javascript is the New PHP
            • 9
              No ability to monitor memory utilitization
            • 8
              Shows Zero output in case of ANY error
            • 7
              Thinks strange results are better than errors
            • 6
              Can be ugly
            • 3
              No GitHub
            • 2
              Slow
            • 0
              HORRIBLE DOCUMENTS, faulty code, repo has bugs

            related JavaScript posts

            Zach Holman

            Oof. I have truly hated JavaScript for a long time. Like, for over twenty years now. Like, since the Clinton administration. It's always been a nightmare to deal with all of the aspects of that silly language.

            But wowza, things have changed. Tooling is just way, way better. I'm primarily web-oriented, and using React and Apollo together the past few years really opened my eyes to building rich apps. And I deeply apologize for using the phrase rich apps; I don't think I've ever said such Enterprisey words before.

            But yeah, things are different now. I still love Rails, and still use it for a lot of apps I build. But it's that silly rich apps phrase that's the problem. Users have way more comprehensive expectations than they did even five years ago, and the JS community does a good job at building tools and tech that tackle the problems of making heavy, complicated UI and frontend work.

            Obviously there's a lot of things happening here, so just saying "JavaScript isn't terrible" might encompass a huge amount of libraries and frameworks. But if you're like me, yeah, give things another shot- I'm somehow not hating on JavaScript anymore and... gulp... I kinda love it.

            See more
            Conor Myhrvold
            Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 11.7M views

            How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

            Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

            Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

            https://eng.uber.com/distributed-tracing/

            (GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

            Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

            See more
            Git logo

            Git

            295.6K
            177.1K
            6.6K
            Fast, scalable, distributed revision control system
            295.6K
            177.1K
            + 1
            6.6K
            PROS OF GIT
            • 1.4K
              Distributed version control system
            • 1.1K
              Efficient branching and merging
            • 959
              Fast
            • 845
              Open source
            • 726
              Better than svn
            • 368
              Great command-line application
            • 306
              Simple
            • 291
              Free
            • 232
              Easy to use
            • 222
              Does not require server
            • 27
              Distributed
            • 22
              Small & Fast
            • 18
              Feature based workflow
            • 15
              Staging Area
            • 13
              Most wide-spread VSC
            • 11
              Role-based codelines
            • 11
              Disposable Experimentation
            • 7
              Frictionless Context Switching
            • 6
              Data Assurance
            • 5
              Efficient
            • 4
              Just awesome
            • 3
              Github integration
            • 3
              Easy branching and merging
            • 2
              Compatible
            • 2
              Flexible
            • 2
              Possible to lose history and commits
            • 1
              Rebase supported natively; reflog; access to plumbing
            • 1
              Light
            • 1
              Team Integration
            • 1
              Fast, scalable, distributed revision control system
            • 1
              Easy
            • 1
              Flexible, easy, Safe, and fast
            • 1
              CLI is great, but the GUI tools are awesome
            • 1
              It's what you do
            • 0
              Phinx
            CONS OF GIT
            • 16
              Hard to learn
            • 11
              Inconsistent command line interface
            • 9
              Easy to lose uncommitted work
            • 7
              Worst documentation ever possibly made
            • 5
              Awful merge handling
            • 3
              Unexistent preventive security flows
            • 3
              Rebase hell
            • 2
              When --force is disabled, cannot rebase
            • 2
              Ironically even die-hard supporters screw up badly
            • 1
              Doesn't scale for big data

            related Git posts

            Simon Reymann
            Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 10.4M views

            Our whole DevOps stack consists of the following tools:

            • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
            • Respectively Git as revision control system
            • SourceTree as Git GUI
            • Visual Studio Code as IDE
            • CircleCI for continuous integration (automatize development process)
            • Prettier / TSLint / ESLint as code linter
            • SonarQube as quality gate
            • Docker as container management (incl. Docker Compose for multi-container application management)
            • VirtualBox for operating system simulation tests
            • Kubernetes as cluster management for docker containers
            • Heroku for deploying in test environments
            • nginx as web server (preferably used as facade server in production environment)
            • SSLMate (using OpenSSL) for certificate management
            • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
            • PostgreSQL as preferred database system
            • Redis as preferred in-memory database/store (great for caching)

            The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

            • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
            • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
            • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
            • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
            • Scalability: All-in-one framework for distributed systems.
            • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
            See more
            Tymoteusz Paul
            Devops guy at X20X Development LTD · | 23 upvotes · 9.3M views

            Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

            It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

            I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

            We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

            If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

            The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

            Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

            See more
            GitHub logo

            GitHub

            283.4K
            247.5K
            10.3K
            Powerful collaboration, review, and code management for open source and private development projects
            283.4K
            247.5K
            + 1
            10.3K
            PROS OF GITHUB
            • 1.8K
              Open source friendly
            • 1.5K
              Easy source control
            • 1.3K
              Nice UI
            • 1.1K
              Great for team collaboration
            • 867
              Easy setup
            • 504
              Issue tracker
            • 486
              Great community
            • 483
              Remote team collaboration
            • 451
              Great way to share
            • 442
              Pull request and features planning
            • 147
              Just works
            • 132
              Integrated in many tools
            • 121
              Free Public Repos
            • 116
              Github Gists
            • 112
              Github pages
            • 83
              Easy to find repos
            • 62
              Open source
            • 60
              It's free
            • 60
              Easy to find projects
            • 56
              Network effect
            • 49
              Extensive API
            • 43
              Organizations
            • 42
              Branching
            • 34
              Developer Profiles
            • 32
              Git Powered Wikis
            • 30
              Great for collaboration
            • 24
              It's fun
            • 23
              Clean interface and good integrations
            • 22
              Community SDK involvement
            • 20
              Learn from others source code
            • 16
              Because: Git
            • 14
              It integrates directly with Azure
            • 10
              Standard in Open Source collab
            • 10
              Newsfeed
            • 8
              It integrates directly with Hipchat
            • 8
              Fast
            • 8
              Beautiful user experience
            • 7
              Easy to discover new code libraries
            • 6
              Smooth integration
            • 6
              Cloud SCM
            • 6
              Nice API
            • 6
              Graphs
            • 6
              Integrations
            • 6
              It's awesome
            • 5
              Quick Onboarding
            • 5
              Reliable
            • 5
              Remarkable uptime
            • 5
              CI Integration
            • 5
              Hands down best online Git service available
            • 4
              Uses GIT
            • 4
              Version Control
            • 4
              Simple but powerful
            • 4
              Unlimited Public Repos at no cost
            • 4
              Free HTML hosting
            • 4
              Security options
            • 4
              Loved by developers
            • 4
              Easy to use and collaborate with others
            • 3
              Ci
            • 3
              IAM
            • 3
              Nice to use
            • 3
              Easy deployment via SSH
            • 2
              Easy to use
            • 2
              Leads the copycats
            • 2
              All in one development service
            • 2
              Free private repos
            • 2
              Free HTML hostings
            • 2
              Easy and efficient maintainance of the projects
            • 2
              Beautiful
            • 2
              Easy source control and everything is backed up
            • 2
              IAM integration
            • 2
              Very Easy to Use
            • 2
              Good tools support
            • 2
              Issues tracker
            • 2
              Never dethroned
            • 2
              Self Hosted
            • 1
              Dasf
            • 1
              Profound
            CONS OF GITHUB
            • 54
              Owned by micrcosoft
            • 38
              Expensive for lone developers that want private repos
            • 15
              Relatively slow product/feature release cadence
            • 10
              API scoping could be better
            • 9
              Only 3 collaborators for private repos
            • 4
              Limited featureset for issue management
            • 3
              Does not have a graph for showing history like git lens
            • 2
              GitHub Packages does not support SNAPSHOT versions
            • 1
              No multilingual interface
            • 1
              Takes a long time to commit
            • 1
              Expensive

            related GitHub posts

            Johnny Bell

            I was building a personal project that I needed to store items in a real time database. I am more comfortable with my Frontend skills than my backend so I didn't want to spend time building out anything in Ruby or Go.

            I stumbled on Firebase by #Google, and it was really all I needed. It had realtime data, an area for storing file uploads and best of all for the amount of data I needed it was free!

            I built out my application using tools I was familiar with, React for the framework, Redux.js to manage my state across components, and styled-components for the styling.

            Now as this was a project I was just working on in my free time for fun I didn't really want to pay for hosting. I did some research and I found Netlify. I had actually seen them at #ReactRally the year before and deployed a Gatsby site to Netlify already.

            Netlify was very easy to setup and link to my GitHub account you select a repo and pretty much with very little configuration you have a live site that will deploy every time you push to master.

            With the selection of these tools I was able to build out my application, connect it to a realtime database, and deploy to a live environment all with $0 spent.

            If you're looking to build out a small app I suggest giving these tools a go as you can get your idea out into the real world for absolutely no cost.

            See more

            Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.

            Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!

            Check Out My Architecture: CLICK ME

            Check out the GitHub repo attached

            See more
            Python logo

            Python

            243.3K
            198.4K
            6.9K
            A clear and powerful object-oriented programming language, comparable to Perl, Ruby, Scheme, or Java.
            243.3K
            198.4K
            + 1
            6.9K
            PROS OF PYTHON
            • 1.2K
              Great libraries
            • 961
              Readable code
            • 847
              Beautiful code
            • 787
              Rapid development
            • 689
              Large community
            • 437
              Open source
            • 393
              Elegant
            • 282
              Great community
            • 272
              Object oriented
            • 220
              Dynamic typing
            • 77
              Great standard library
            • 60
              Very fast
            • 55
              Functional programming
            • 49
              Easy to learn
            • 45
              Scientific computing
            • 35
              Great documentation
            • 29
              Productivity
            • 28
              Matlab alternative
            • 28
              Easy to read
            • 24
              Simple is better than complex
            • 20
              It's the way I think
            • 19
              Imperative
            • 18
              Free
            • 18
              Very programmer and non-programmer friendly
            • 17
              Machine learning support
            • 17
              Powerfull language
            • 16
              Fast and simple
            • 14
              Scripting
            • 12
              Explicit is better than implicit
            • 11
              Ease of development
            • 10
              Clear and easy and powerfull
            • 9
              Unlimited power
            • 8
              It's lean and fun to code
            • 8
              Import antigravity
            • 7
              Print "life is short, use python"
            • 7
              Python has great libraries for data processing
            • 6
              Great for tooling
            • 6
              Rapid Prototyping
            • 6
              Readability counts
            • 6
              Fast coding and good for competitions
            • 6
              There should be one-- and preferably only one --obvious
            • 6
              High Documented language
            • 6
              I love snakes
            • 6
              Although practicality beats purity
            • 6
              Flat is better than nested
            • 6
              Now is better than never
            • 5
              Great for analytics
            • 5
              Lists, tuples, dictionaries
            • 4
              Easy to learn and use
            • 4
              Web scraping
            • 4
              Simple and easy to learn
            • 4
              Easy to setup and run smooth
            • 4
              Plotting
            • 4
              Beautiful is better than ugly
            • 4
              Multiple Inheritence
            • 4
              Complex is better than complicated
            • 4
              Socially engaged community
            • 4
              CG industry needs
            • 3
              Flexible and easy
            • 3
              Many types of collections
            • 3
              If the implementation is easy to explain, it may be a g
            • 3
              If the implementation is hard to explain, it's a bad id
            • 3
              Special cases aren't special enough to break the rules
            • 3
              Pip install everything
            • 3
              List comprehensions
            • 3
              No cruft
            • 3
              Generators
            • 3
              Import this
            • 3
              It is Very easy , simple and will you be love programmi
            • 2
              Can understand easily who are new to programming
            • 2
              Powerful language for AI
            • 2
              Should START with this but not STICK with This
            • 2
              A-to-Z
            • 2
              Because of Netflix
            • 2
              Only one way to do it
            • 2
              Better outcome
            • 2
              Good for hacking
            • 2
              Securit
            • 2
              Batteries included
            • 1
              Automation friendly
            • 1
              Sexy af
            • 1
              Slow
            • 1
              Procedural programming
            • 0
              Ni
            • 0
              Powerful
            • 0
              Keep it simple
            CONS OF PYTHON
            • 53
              Still divided between python 2 and python 3
            • 28
              Performance impact
            • 26
              Poor syntax for anonymous functions
            • 22
              GIL
            • 19
              Package management is a mess
            • 14
              Too imperative-oriented
            • 12
              Hard to understand
            • 12
              Dynamic typing
            • 12
              Very slow
            • 8
              Indentations matter a lot
            • 8
              Not everything is expression
            • 7
              Incredibly slow
            • 7
              Explicit self parameter in methods
            • 6
              Requires C functions for dynamic modules
            • 6
              Poor DSL capabilities
            • 6
              No anonymous functions
            • 5
              Fake object-oriented programming
            • 5
              Threading
            • 5
              The "lisp style" whitespaces
            • 5
              Official documentation is unclear.
            • 5
              Hard to obfuscate
            • 5
              Circular import
            • 4
              Lack of Syntax Sugar leads to "the pyramid of doom"
            • 4
              The benevolent-dictator-for-life quit
            • 4
              Not suitable for autocomplete
            • 2
              Meta classes
            • 1
              Training wheels (forced indentation)

            related Python posts

            Conor Myhrvold
            Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 11.7M views

            How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

            Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

            Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

            https://eng.uber.com/distributed-tracing/

            (GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

            Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

            See more
            Nick Parsons
            Building cool things on the internet 🛠️ at Stream · | 35 upvotes · 4.2M views

            Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.

            We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)

            We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.

            Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.

            #FrameworksFullStack #Languages

            See more