What is Protobuf and what are its top alternatives?
Top Alternatives to Protobuf
- JSON
JavaScript Object Notation is a lightweight data-interchange format. It is easy for humans to read and write. It is easy for machines to parse and generate. It is based on a subset of the JavaScript Programming Language. ...
- Apache Thrift
The Apache Thrift software framework, for scalable cross-language services development, combines a software stack with a code generation engine to build services that work efficiently and seamlessly between C++, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#, Cocoa, JavaScript, Node.js, Smalltalk, OCaml and Delphi and other languages. ...
- ActiveMQ
Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License. ...
- Avro
It is a row-oriented remote procedure call and data serialization framework developed within Apache's Hadoop project. It uses JSON for defining data types and protocols, and serializes data in a compact binary format. ...
- MQTT
It was designed as an extremely lightweight publish/subscribe messaging transport. It is useful for connections with remote locations where a small code footprint is required and/or network bandwidth is at a premium. ...
- gRPC
gRPC is a modern open source high performance RPC framework that can run in any environment. It can efficiently connect services in and across data centers with pluggable support for load balancing, tracing, health checking... ...
- JavaScript
JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles. ...
- Git
Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...
Protobuf alternatives & related posts
- Simple5
- Widely supported4
related JSON posts
Application and Data: Since my personal website ( https://alisoueidan.com ) is a SPA I've chosen to use Vue.js, as a framework to create it. After a short skeptical phase I immediately felt in love with the single file component concept! I also used vuex for state management, which makes working with several components, which are communicating with each other even more fun and convenient to use. Of course, using Vue requires using JavaScript as well, since it is the basis of it.
For markup and style, I used Pug and Sass, since they’re the perfect match to me. I love the clean and strict syntax of both of them and even more that their structure is almost similar. Also, both of them come with an expanded functionality such as mixins, loops and so on related to their “siblings” (HTML and CSS). Both of them require nesting and prevent untidy code, which can be a huge advantage when working in teams. I used JSON to store data (since the data quantity on my website is moderate) – JSON works also good in combo with Pug, using for loops, based on the JSON Objects for example.
To send my contact form I used PHP, since sending emails using PHP is still relatively convenient, simple and easy done.
DevOps: Of course, I used Git to do my version management (which I even do in smaller projects like my website just have an additional backup of my code). On top of that I used GitHub since it now supports private repository for free accounts (which I am using for my own). I use Babel to use ES6 functionality such as arrow functions and so on, and still don’t losing cross browser compatibility.
Side note: I used npm for package management. 🎉
*Business Tools: * I use Asana to organize my project. This is a big advantage to me, even if I work alone, since “private” projects can get interrupted for some time. By using Asana I still know (even after month of not touching a project) what I’ve done, on which task I was at last working on and what still is to do. Working in Teams (for enterprise I’d take on Jira instead) of course Asana is a Tool which I really love to use as well. All the graphics on my website are SVG which I have created with Adobe Illustrator and adjusted within the SVG code or by using JavaScript or CSS (SASS).
I use Visual Studio Code because at this time is a mature software and I can do practically everything using it.
It's free and open source: The project is hosted on GitHub and it’s free to download, fork, modify and contribute to the project.
Multi-platform: You can download binaries for different platforms, included Windows (x64), MacOS and Linux (
.rpm
and.deb
packages)LightWeight: It runs smoothly in different devices. It has an average memory and CPU usage. Starts almost immediately and it’s very stable.
Extended language support: Supports by default the majority of the most used languages and syntax like JavaScript, HTML, C#, Swift, Java, PHP, Python and others. Also, VS Code supports different file types associated to projects like
.ini
,.properties
, XML and JSON files.Integrated tools: Includes an integrated terminal, debugger, problem list and console output inspector. The project navigator sidebar is simple and powerful: you can manage your files and folders with ease. The command palette helps you find commands by text. The search widget has a powerful auto-complete feature to search and find your files.
Extensible and configurable: There are many extensions available for every language supported, including syntax highlighters, IntelliSense and code completion, and debuggers. There are also extension to manage application configuration and architecture like Docker and Jenkins.
Integrated with Git: You can visually manage your project repositories, pull, commit and push your changes, and easy conflict resolution.( there is support for SVN (Subversion) users by plugin)
related Apache Thrift posts
Since the beginning, Cal Henderson has been the CTO of Slack. Earlier this year, he commented on a Quora question summarizing their current stack.
Apps- Web: a mix of JavaScript/ES6 and React.
- Desktop: And Electron to ship it as a desktop application.
- Android: a mix of Java and Kotlin.
- iOS: written in a mix of Objective C and Swift.
- The core application and the API written in PHP/Hack that runs on HHVM.
- The data is stored in MySQL using Vitess.
- Caching is done using Memcached and MCRouter.
- The search service takes help from SolrCloud, with various Java services.
- The messaging system uses WebSockets with many services in Java and Go.
- Load balancing is done using HAproxy with Consul for configuration.
- Most services talk to each other over gRPC,
- Some Thrift and JSON-over-HTTP
- Voice and video calling service was built in Elixir.
- Built using open source tools including Presto, Spark, Airflow, Hadoop and Kafka.
- For server configuration and management we use Terraform, Chef and Kubernetes.
- We use Prometheus for time series metrics and ELK for logging.
- Easy to use18
- Open source14
- Efficient13
- JMS compliant10
- High Availability6
- Scalable5
- Distributed Network of brokers3
- Persistence3
- Support XA (distributed transactions)3
- Docker delievery1
- Highly configurable1
- RabbitMQ0
- ONLY Vertically Scalable1
- Support1
- Low resilience to exceptions and interruptions1
- Difficult to scale1
related ActiveMQ posts
I want to choose Message Queue with the following features - Highly Available, Distributed, Scalable, Monitoring. I have RabbitMQ, ActiveMQ, Kafka and Apache RocketMQ in mind. But I am confused which one to choose.
I use ActiveMQ because RabbitMQ have stopped giving the support for AMQP 1.0 or above version and the earlier version of AMQP doesn't give the functionality to support OAuth.
If OAuth is not required and we can go with AMQP 0.9 then i still recommend rabbitMq.
related Avro posts
- Varying levels of Quality of Service to fit a range of3
- Lightweight with a relatively small data footprint2
- Very easy to configure and use with open source tools2
- Easy to configure in an unsecure manner1
related MQTT posts
Kindly suggest the best tool for generating 10Mn+ concurrent user load. The tool must support MQTT traffic, REST API, support to interfaces such as Kafka, websockets, persistence HTTP connection, auth type support to assess the support /coverage.
The tool can be integrated into CI pipelines like Azure Pipelines, GitHub, and Jenkins.
I want to use NATS for my IoT Platform and replace it instead of the MQTT broker. is there any preferred added value to do that?
- Higth performance24
- The future of API15
- Easy setup13
- Contract-based5
- Polyglot4
- Garbage2
related gRPC posts
We just launched the Segment Config API (try it out for yourself here) — a set of public REST APIs that enable you to manage your Segment configuration. Behind the scenes the Config API is built with Go , GRPC and Envoy.
At Segment, we build new services in Go by default. The language is simple so new team members quickly ramp up on a codebase. The tool chain is fast so developers get immediate feedback when they break code, tests or integrations with other systems. The runtime is fast so it performs great at scale.
For the newest round of APIs we adopted the GRPC service #framework.
The Protocol Buffer service definition language makes it easy to design type-safe and consistent APIs, thanks to ecosystem tools like the Google API Design Guide for API standards, uber/prototool
for formatting and linting .protos and lyft/protoc-gen-validate
for defining field validations, and grpc-gateway
for defining REST mapping.
With a well designed .proto, its easy to generate a Go server interface and a TypeScript client, providing type-safe RPC between languages.
For the API gateway and RPC we adopted the Envoy service proxy.
The internet-facing segmentapis.com
endpoint is an Envoy front proxy that rate-limits and authenticates every request. It then transcodes a #REST / #JSON request to an upstream GRPC request. The upstream GRPC servers are running an Envoy sidecar configured for Datadog stats.
The result is API #security , #reliability and consistent #observability through Envoy configuration, not code.
We experimented with Swagger service definitions, but the spec is sprawling and the generated clients and server stubs leave a lot to be desired. GRPC and .proto and the Go implementation feels better designed and implemented. Thanks to the GRPC tooling and ecosystem you can generate Swagger from .protos, but it’s effectively impossible to go the other way.
I used GraphQL extensively at a previous employer a few years ago and really appreciated the data-driven schema etc alongside the many other benefits it provided. At that time, it seemed like it was set to replace RESTful APIs and many companies were adopting it.
However, as of late, it seems like interest has been waning for GraphQL as opposed to increasing as I had assumed it would. Am I missing something here? What is the current perspective regarding this technology?
Currently, I'm working with gRPC and was curious as to the state of everything now.
JavaScript
- Can be used on frontend/backend1.7K
- It's everywhere1.5K
- Lots of great frameworks1.2K
- Fast897
- Light weight745
- Flexible425
- You can't get a device today that doesn't run js392
- Non-blocking i/o286
- Ubiquitousness237
- Expressive191
- Extended functionality to web pages55
- Relatively easy language49
- Executed on the client side46
- Relatively fast to the end user30
- Pure Javascript25
- Functional programming21
- Async15
- Full-stack13
- Setup is easy12
- Its everywhere12
- Future Language of The Web12
- Because I love functions11
- JavaScript is the New PHP11
- Like it or not, JS is part of the web standard10
- Expansive community9
- Everyone use it9
- Can be used in backend, frontend and DB9
- Easy9
- Most Popular Language in the World8
- Powerful8
- Can be used both as frontend and backend as well8
- For the good parts8
- No need to use PHP8
- Easy to hire developers8
- Agile, packages simple to use7
- Love-hate relationship7
- Photoshop has 3 JS runtimes built in7
- Evolution of C7
- It's fun7
- Hard not to use7
- Versitile7
- Its fun and fast7
- Nice7
- Popularized Class-Less Architecture & Lambdas7
- Supports lambdas and closures7
- It let's me use Babel & Typescript6
- Can be used on frontend/backend/Mobile/create PRO Ui6
- 1.6K Can be used on frontend/backend6
- Client side JS uses the visitors CPU to save Server Res6
- Easy to make something6
- Clojurescript5
- Promise relationship5
- Stockholm Syndrome5
- Function expressions are useful for callbacks5
- Scope manipulation5
- Everywhere5
- Client processing5
- What to add5
- Because it is so simple and lightweight4
- Only Programming language on browser4
- Test1
- Hard to learn1
- Test21
- Not the best1
- Easy to understand1
- Subskill #41
- Easy to learn1
- Hard 彤0
- A constant moving target, too much churn22
- Horribly inconsistent20
- Javascript is the New PHP15
- No ability to monitor memory utilitization9
- Shows Zero output in case of ANY error8
- Thinks strange results are better than errors7
- Can be ugly6
- No GitHub3
- Slow2
- HORRIBLE DOCUMENTS, faulty code, repo has bugs0
related JavaScript posts
Oof. I have truly hated JavaScript for a long time. Like, for over twenty years now. Like, since the Clinton administration. It's always been a nightmare to deal with all of the aspects of that silly language.
But wowza, things have changed. Tooling is just way, way better. I'm primarily web-oriented, and using React and Apollo together the past few years really opened my eyes to building rich apps. And I deeply apologize for using the phrase rich apps; I don't think I've ever said such Enterprisey words before.
But yeah, things are different now. I still love Rails, and still use it for a lot of apps I build. But it's that silly rich apps phrase that's the problem. Users have way more comprehensive expectations than they did even five years ago, and the JS community does a good job at building tools and tech that tackle the problems of making heavy, complicated UI and frontend work.
Obviously there's a lot of things happening here, so just saying "JavaScript isn't terrible" might encompass a huge amount of libraries and frameworks. But if you're like me, yeah, give things another shot- I'm somehow not hating on JavaScript anymore and... gulp... I kinda love it.
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
- Distributed version control system1.4K
- Efficient branching and merging1.1K
- Fast959
- Open source845
- Better than svn726
- Great command-line application368
- Simple306
- Free291
- Easy to use232
- Does not require server222
- Distributed27
- Small & Fast22
- Feature based workflow18
- Staging Area15
- Most wide-spread VSC13
- Role-based codelines11
- Disposable Experimentation11
- Frictionless Context Switching7
- Data Assurance6
- Efficient5
- Just awesome4
- Github integration3
- Easy branching and merging3
- Compatible2
- Flexible2
- Possible to lose history and commits2
- Rebase supported natively; reflog; access to plumbing1
- Light1
- Team Integration1
- Fast, scalable, distributed revision control system1
- Easy1
- Flexible, easy, Safe, and fast1
- CLI is great, but the GUI tools are awesome1
- It's what you do1
- Phinx0
- Hard to learn16
- Inconsistent command line interface11
- Easy to lose uncommitted work9
- Worst documentation ever possibly made7
- Awful merge handling5
- Unexistent preventive security flows3
- Rebase hell3
- When --force is disabled, cannot rebase2
- Ironically even die-hard supporters screw up badly2
- Doesn't scale for big data1
related Git posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.