Pinterest Flink Deployment Framework

1,436
Pinterest
Pinterest is a social bookmarking site where users collect and share photos of their favorite events, interests and hobbies. One of the fastest growing social networks online, Pinterest is the third-largest such network behind only Facebook and Twitter.

By Rainie Li | Software Engineer, Stream Processing Platform Team


Background

At Pinterest, stream processing allows us to unlock value from real time data for pinners and partners. The Stream Processing Platform team is working on building a reliable and scalable platform to support many critical streaming applications including real-time experiment analytics and real time machine learning signals.

Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams. It provides features including exactly-once guarantees, low latency, high throughput, and powerful computation model. At Pinterest, we adopt Flink as the unified streaming processing engine.

Requirements

Standardize Flink Build

At Pinterest, we use Bazel as a build system. We need a standardized Bazel rule to build all Flink jobs without changing Makefiles. Once build is done, instead of asking users to copy Flink jars to YARN clusters, jars should be automatically uploaded to remote storage.

Deployment and Operations History

Users used to copy Flink jars to YARN clusters and manually run commands. It was hard to track previous execution histories if we needed to recover failed jobs. We need to provide standard Flink operations such as launching, killing, triggering savepoint, and resuming jobs from the most recent savepoint.

Job Deduplication

Flink applications are deployed as services, therefore one instance should be running at a time for each Flink application. We need to prevent cases when users accidentally deploy twice for the same job, meaning both instances might write to the same Kafka topic. This would mean double writes to Kafka and could affect downstream jobs.

Deployment Framework

We built our Flink deployment framework on top of Bazel, Hermez (internal continuous deployment platform), Job Submission Service (internal service), and YARN clusters.

Figure 1. Deployment high level architecture

Create Bazel BUILD file

The BUILD file needs to contain load(“flink_release”). Users also need to insert a Bazel rule like this:

Define Hermez Deployment File

Hermez is the Pinterest Continuous Deployment System. In order to launch a Flink job with Hermez, users need to create a Hermez.yml file. This file contains information including which YARN cluster Flink jobs to run in, what YARN parameters to use, what resources to use, etc. For each instance of Flink job, users should set up a separate YAML file. For example, if users run their jobs in dev, staging, and prod environments, they will need to have three different YAML files (one for each environment).

Here’s an example of yml file:

Automatically Flink Job Building

The following numbers are referring to steps in Figure 1: Deployment high level architecture

Whenever a user lands a change to Git repo, Jenkins job will be triggered to build Flink job JARs (1). Jenkins job will follow flink_relase rules that are described in the BUILD file to build Flink JAR and upload it to the S3 bucket (3). Meanwhile, it will upload deployment related Hermez YAML files to Artifactory (2). Hermez monitors Artifactory; when it sees a new yml file, it will display it on UI to allow users to launch a job using that yml (5).

Flink Job Launching

When users launch a Flink job, Hermez converts the yml file into a JSON and submits it to Job Submission Service (JSS) (6). JSS is a service maintained by Pinterest that has the ability to schedule and launch Flink jobs to YARN clusters.

JSS examines the request and ensures that Flink JARs and Flink job state exist in S3 (7). If everything is alright, JSS will first launch a shell-runner job which will execute a command on a YARN cluster cluster (8). The shell-runner job downloads the Flink job’s JAR from S3 and then kicks off the actual Flink job using the configuration provided by JSS (9). The reason we add a shell-runner job is to keep JSS as a thin layer without dealing with different compute engine clients (Flink, Spark, MapReduce, etc.) and different configurations for each cluster.

JSS Deduplication

When resuming a Flink job, we provide several options including resume from most recent savepoint or checkpoint, fresh state, and specify a savepoint or checkpoint path. Job deduplication features ensure that there is only one instance of your Flink job running at a time.

The way job deduplication works is that each job has a unique name when a job is submitted. If there is already an instance of the job running, JSS will trigger a safepoint and stop it first, then submit the new job. If the stop request fails because savepoint fails, then the submitted request will fail and the running instance remains running. If there is one deployment in progress, the new job submission would be rejected

Flink Job Configuration Hotfix

Due to Flink configuration being packaged together with Flink job binary, users used to check in config changes to Repo and rebuild the package. This whole process could take more than 10 minutes. This can be a problem if we would like to quickly adjust parameters during incidents. For example, when Flink jobs failed in production due to lack of resources, we used to go through the entire build process to rollout resource config changes. After the incidents got resolved, we needed to check in another change to roll back these configs. To speed up this process, we provide a hotfix feature on Hermez to overwrite Flink job configuration without code change. Users can adjust Flink configuration values during deployment. Behind the scenes, Hermez will directly overwrite these values in ymls which Hermez read from Artifactory.

What’s Next

Reducing Deployment Latency

The current approach launches shell-runner first. Then, shell-runner launches Flink jobs to YARN clusters which could increase latency. We plan to improve this process to reduce end-to-end Flink job launch time.

Automatically Job Failover

To further improve platform and Flink application availability, we built YARN clusters in multiple AWS Availability Zones (AZ) to provide backup when one cluster or one AZ become unavailable. We are also building a service that could automatically detect any cluster failure and failover failed jobs to backup clusters in different AZs or detect application failures and restart the application automatically.

Stay tuned!

Acknowledgments

Thanks to Steven Bairos-Novak and Yu Yang for their countless contributions. Thanks Ang Zhang for updating this blog. This project is a joint effort across multiple teams at Pinterest. Thanks to the Engineering Productivity Team for Hermez support.

Pinterest
Pinterest is a social bookmarking site where users collect and share photos of their favorite events, interests and hobbies. One of the fastest growing social networks online, Pinterest is the third-largest such network behind only Facebook and Twitter.
Tools mentioned in article
Open jobs at Pinterest
Backend Engineer, Measurement User Match
Seattle, WA, US

About Pinterest:  

Millions of people across the world come to Pinterest to find new ideas every day. It’s where they get inspiration, dream about new possibilities and plan for what matters most. Our mission is to help those people find their inspiration and create a life they love. In your role, you’ll be challenged to take on work that upholds this mission and pushes Pinterest forward. You’ll grow as a person and leader in your field, all the while helping Pinners make their lives better in the positive corner of the internet.

Our mission is to help advertisers gain a deep understanding of their ad performance and generate helpful insights so they can make good decisions about their ad campaigns. You’d design and build systems and services to help advertisers learn more about conversions, viewability, brand lift, sales lift, offline conversions, etc. We’re building end-to-end Big Data distributed systems using a board mix of leading open source and Cloud technologies and integrating with 3rd party tools that Advertisers already trust.

What you’ll do:

  • Increase visibility and scale of conversion capture to power our measurement, targeting, and auction products
  • Create cutting edge technical solutions to match conversion events to Pinners
  • Design and build conversion tags, APIs, and data processing algorithms around tracking and reporting against conversions

What we’re looking for:

  • 3+ years of software engineering experience
  • Experiences in developing backend large scale distributed services and data processing workflows in Java and Python

#LI-GK1

Engineering Manager, Shopping Content...
Toronto, ON, CA

About Pinterest:  

Millions of people across the world come to Pinterest to find new ideas every day. It’s where they get inspiration, dream about new possibilities and plan for what matters most. Our mission is to help those people find their inspiration and create a life they love. In your role, you’ll be challenged to take on work that upholds this mission and pushes Pinterest forward. You’ll grow as a person and leader in your field, all the while helping Pinners make their lives better in the positive corner of the internet.

Pinterest is aiming to build a world-class shopping experience for our users, and has a unique advantage to succeed due to the high shopping intent of Pinners. The new Shopping Content Mining team being founded in Toronto plays a critical role in this journey. This team is responsible for building a brand new platform for mining and understanding product data, including extracting high quality product attributes from web pages and free texts that come from all major retailers across the world, mining product reviews and product relationships, product classification, etc. The rich product data generated by this platform is the foundation of the unified product catalog, which powers all shopping experiences at Pinterest (e.g., product search & recommendations, product detail page, shop the look, shopping ads).

There are unique technical challenges for this team: building large scale systems that can process billions of products, Machine Learning models that require few training examples to generate wrappers for web pages, NLP models that can extract information from free-texts, easy-to-use human labelling tools that generate high quality labeled data.Your work will have a huge impact on improving the shopping experience of 400M+ Pinners and driving revenue growth for Pinterest.

What you’ll do:

  • As the Engineering Manager, you’ll be responsible for:
    • Growing this team further in Toronto
    • Driving execution and deliver impact
    • Setting long term technical visions for this area
  • Work with tech leads to provide technical guidance on:
    • Large scale systems that can process billions of products
    • ML models for wrapper induction that require few training examples, NLP models for understanding free-texts
  • Drive cross functional collaborations with partner teams working on shopping

What we’re looking for:

  • 7+ years of industry experience, including 2+ years of management experience
  • Experience on large scale machine learning systems (full ML stack from modelling to deployment at scale.)
  • Experience with big data technologies (e.g., Hadoop/Spark) and scalable realtime systems that process stream data

Nice to have:

  • PhD in Machine Learning or related areas, publication on top ML conferences
  • Familiarity with information extraction techniques for web-pages and free-texts.
  • Experience working with shopping data is a plus.
  • Experience building internal tools for labeling / diagnosing.

#LI-EA1

Staff Machine Learning Software Engin...
Toronto, ON, CA

About Pinterest:  

Millions of people across the world come to Pinterest to find new ideas every day. It’s where they get inspiration, dream about new possibilities and plan for what matters most. Our mission is to help those people find their inspiration and create a life they love. In your role, you’ll be challenged to take on work that upholds this mission and pushes Pinterest forward. You’ll grow as a person and leader in your field, all the while helping Pinners make their lives better in the positive corner of the internet.

Shopping is at the core of Pinterest’s mission to help people create a life they love. The shopping discovery team at Pinterest is inventing a brand new, more visual and personalized shopping experience for 350M+ users worldwide. The team is responsible for delivering mid-funnel shopping experience on shopping surfaces like Product Detail Page, Shopping Search, Shopping on Board etc. As an engineer of the team you will be working on the most cutting edge recommendation algorithms to develop diverse types of shopping recommendations that will be displayed across different shopping surfaces on Pinterest. 

You’ll also be responsible for optimizing the whole page layout by appropriately selecting and slotting the UI templates and recommendation modules optimizing towards a shopping metric. As an engineer of the team you’ll be running experiments and directly improving the shopping metrics contributing to the bottom line of the company.

If you are excited about large scale machine learning problems in the area of recommendation, search and whole page optimization then you must consider this role

What you'll do: 

  • Develop large scale shopping recommendation algorithms
  • Build data pipelines to do data analysis and collect training data
  • Train deep learning models to improve quality and engagement of shopping recommenders
  • Work on backend and infrastructure to build, deploy and serve machine learning models
  • Develop algorithms to optimize the whole page layout of the shopping surfaces
  • Drive the roadmap for next generation of shopping recommenders

What we're looking for: 

  • 6+ years working experience in the area of applied Machine Learning
  • Interest or experience working on a large-scale search, recommendation and ranking problems
  • Interest and experience in doing full stack ML, including backend and ML infrastructure
  • Experience is any of the following areas
    • Developing large scale recommender systems
    • Contextual bandit algorithms
    • Reinforcement learning

#LI-JY1

Senior Machine Learning Engineer, Sho...
Toronto, ON, CA

About Pinterest:  

Millions of people across the world come to Pinterest to find new ideas every day. It’s where they get inspiration, dream about new possibilities and plan for what matters most. Our mission is to help those people find their inspiration and create a life they love. In your role, you’ll be challenged to take on work that upholds this mission and pushes Pinterest forward. You’ll grow as a person and leader in your field, all the while helping Pinners make their lives better in the positive corner of the internet.

Pinterest is aiming to build a world-class shopping experience for our users, and has a unique advantage to succeed due to the high shopping intent of Pinners. The new Shopping Content Mining team being founded in Toronto plays a critical role in this journey. This team is responsible for building a brand new platform for mining and understanding product data, including extracting high quality product attributes from web pages and free texts that come from all major retailers across the world, mining product reviews and product relationships, product classification, etc. The rich product data generated by this platform is the foundation of the unified product catalog, which powers all shopping experiences at Pinterest (e.g., product search & recommendations, product detail page, shop the look, shopping ads).

There are unique technical challenges for this team: building large scale systems that can process billions of products, Machine Learning models that require few training examples to generate wrappers for web pages, NLP models that can extract information from free-texts, easy-to-use human labelling tools that generate high quality labeled data. Your work will have a huge impact on improving the shopping experience of 400M+ Pinners and driving revenue growth for Pinterest.

What you’ll do:

  • As a ML engineer, you will design and build large scale ML systems that can process billions of products
  • ML models for wrapper induction that require few training examples, NLP models for understanding free-texts
  • Drive cross functional collaborations with partner teams working on shopping

What we’re looking for:

  • 3+ years of industry experience
  • Hands-on experience on large scale machine learning systems (full ML stack from modelling to deployment at scale.)
  • Hands-on experience with big data technologies (e.g., Hadoop/Spark) and scalable realtime systems that process stream data
  • Nice to have: PhD in Machine Learning or related areas, publication on top ML conferences, Familiarity with information extraction techniques for web-pages and free-texts, Experience working with shopping data is a plus

#LI-EA1

Verified by
Security Software Engineer
Tech Lead, Big Data Platform
Software Engineer
Talent Brand Manager
Sourcer
Software Engineer
You may also like