What is OCaml and what are its top alternatives?
Top Alternatives to OCaml
- Haskell
It is a general purpose language that can be used in any domain and use case, it is ideally suited for proprietary business logic and data analysis, fast prototyping and enhancing existing software environments with correct code, performance and scalability. ...
- ReasonML
It lets you write simple, fast and quality type safe code while leveraging both the JavaScript & OCaml ecosystems.It is powerful, safe type inference means you rarely have to annotate types, but everything gets checked for you. ...
- Java
Java is a programming language and computing platform first released by Sun Microsystems in 1995. There are lots of applications and websites that will not work unless you have Java installed, and more are created every day. Java is fast, secure, and reliable. From laptops to datacenters, game consoles to scientific supercomputers, cell phones to the Internet, Java is everywhere! ...
- Erlang
Some of Erlang's uses are in telecoms, banking, e-commerce, computer telephony and instant messaging. Erlang's runtime system has built-in support for concurrency, distribution and fault tolerance. OTP is set of Erlang libraries and design principles providing middle-ware to develop these systems. ...
- Rust
Rust is a systems programming language that combines strong compile-time correctness guarantees with fast performance. It improves upon the ideas of other systems languages like C++ by providing guaranteed memory safety (no crashes, no data races) and complete control over the lifecycle of memory. ...
- Python
Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...
- Scala
Scala is an acronym for “Scalable Language”. This means that Scala grows with you. You can play with it by typing one-line expressions and observing the results. But you can also rely on it for large mission critical systems, as many companies, including Twitter, LinkedIn, or Intel do. To some, Scala feels like a scripting language. Its syntax is concise and low ceremony; its types get out of the way because the compiler can infer them. ...
- Clojure
Clojure is designed to be a general-purpose language, combining the approachability and interactive development of a scripting language with an efficient and robust infrastructure for multithreaded programming. Clojure is a compiled language - it compiles directly to JVM bytecode, yet remains completely dynamic. Clojure is a dialect of Lisp, and shares with Lisp the code-as-data philosophy and a powerful macro system. ...
OCaml alternatives & related posts
- Purely-functional programming90
- Statically typed66
- Type-safe59
- Open source39
- Great community38
- Built-in concurrency31
- Built-in parallelism30
- Composable30
- Referentially transparent24
- Generics20
- Type inference15
- Intellectual satisfaction15
- If it compiles, it's correct12
- Flexible8
- Monads8
- Great type system5
- Proposition testing with QuickCheck4
- One of the most powerful languages *(see blub paradox)*4
- Purely-functional Programming4
- Highly expressive, type-safe, fast development time3
- Pattern matching and completeness checking3
- Great maintainability of the code3
- Fun3
- Reliable3
- Best in class thinking tool2
- Kind system2
- Better type-safe than sorry2
- Type classes2
- Predictable1
- Orthogonality1
- Too much distraction in language extensions9
- Error messages can be very confusing8
- Libraries have poor documentation5
- No good ABI3
- No best practices3
- Poor packaging for apps written in it for Linux distros2
- Sometimes performance is unpredictable2
- Slow compilation1
- Monads are hard to understand1
related Haskell posts
Why I am using Haskell in my free time?
I have 3 reasons for it. I am looking for:
Fun.
Improve functional programming skill.
Improve problem-solving skill.
Laziness and mathematical abstractions behind Haskell makes it a wonderful language.
It is Pure functional, it helps me to write better Scala code.
Highly expressive language gives elegant ways to solve coding puzzle.
- Pattern Matching4
- Type System3
- React1
- Bindings1
related ReasonML posts
Java
- Great libraries603
- Widely used446
- Excellent tooling401
- Huge amount of documentation available396
- Large pool of developers available334
- Open source208
- Excellent performance203
- Great development158
- Used for android150
- Vast array of 3rd party libraries148
- Compiled Language60
- Used for Web52
- Managed memory46
- High Performance46
- Native threads45
- Statically typed43
- Easy to read35
- Great Community33
- Reliable platform29
- Sturdy garbage collection24
- JVM compatibility24
- Cross Platform Enterprise Integration22
- Good amount of APIs20
- Universal platform20
- Great Support18
- Great ecosystem14
- Backward compatible11
- Lots of boilerplate11
- Everywhere10
- Excellent SDK - JDK9
- Cross-platform7
- It's Java7
- Static typing7
- Portability6
- Mature language thus stable systems6
- Better than Ruby6
- Long term language6
- Used for Android development5
- Clojure5
- Vast Collections Library5
- Best martial for design4
- Most developers favorite4
- Old tech4
- Testable3
- History3
- Javadoc3
- Stable platform, which many new languages depend on3
- Great Structure3
- Faster than python2
- Type Safe2
- Job0
- Verbosity33
- NullpointerException27
- Nightmare to Write17
- Overcomplexity is praised in community culture16
- Boiler plate code12
- Classpath hell prior to Java 98
- No REPL6
- No property4
- Code are too long3
- Non-intuitive generic implementation2
- There is not optional parameter2
- Floating-point errors2
- Java's too statically, stronglly, and strictly typed1
- Returning Wildcard Types1
- Terrbible compared to Python/Batch Perormence1
related Java posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
When you think about test automation, it’s crucial to make it everyone’s responsibility (not just QA Engineers'). We started with Selenium and Java, but with our platform revolving around Ruby, Elixir and JavaScript, QA Engineers were left alone to automate tests. Cypress was the answer, as we could switch to JS and simply involve more people from day one. There's a downside too, as it meant testing on Chrome only, but that was "good enough" for us + if really needed we can always cover some specific cases in a different way.
Erlang
- Real time, distributed applications62
- Concurrency Support62
- Fault tolerance58
- Soft real-time36
- Open source32
- Message passing22
- Functional programming22
- Immutable data16
- Works as expected14
- Facebook chat uses it at backend6
- Practical5
- Knowledgeable community5
- Bullets included4
- WhatsApp uses it at backend1
- Languange is not popular demand1
related Erlang posts
Another major decision was to adopt Elixir and Phoenix Framework - the DX (Developer eXperience) is pretty similar to what we know from RoR, but this tech is running on the top of rock-solid Erlang platform which is powering planet-scale telecom solutions for 20+ years. So we're getting pretty much the best from both worlds: minimum friction & smart conventions that eliminate the excessive boilerplate AND highly concurrent EVM (Erlang's Virtual Machine) that makes all the scalability problems vanish. The transition was very smooth - none of Ruby developers we had decided to leave because of Elixir. What is more, we kept recruiting Ruby developers w/o any requirement regarding Elixir proficiency & we still were able to educate them internally in almost no time. Obviously Elixir comes with some more tools in the stack: Credo , Hex , AppSignal (required to properly monitor BEAM apps).
Hello everyone, I plan on building a platform that supports 100s of forums out of the box, it would give the user the ability to create forums, where other users can comment, post images, and videos (the size of videos would be limited). Each forum would have the ability to trend. I have been doing a lot of research and I have arrived at Golang and Erlang as the backend languages and PostgreSQL as the DB. Erlang would be used for the routing of chats and messages, while Go would be used to manage the forums. We would also be implementing a one on one chat system like WhatsApp chat, where users can add contacts.
Please I would like to know if the languages picked are appropriate for this project. Suggestions would be appreciated.
- Guaranteed memory safety145
- Fast132
- Open source88
- Minimal runtime75
- Pattern matching72
- Type inference63
- Algebraic data types57
- Concurrent57
- Efficient C bindings47
- Practical43
- Best advances in languages in 20 years37
- Safe, fast, easy + friendly community32
- Fix for C/C++30
- Stablity25
- Zero-cost abstractions24
- Closures23
- Extensive compiler checks20
- Great community20
- Async/await18
- No NULL type18
- Completely cross platform: Windows, Linux, Android15
- No Garbage Collection15
- Great documentations14
- High-performance14
- Generics12
- Super fast12
- High performance12
- Safety no runtime crashes11
- Fearless concurrency11
- Compiler can generate Webassembly11
- Macros11
- Guaranteed thread data race safety11
- Helpful compiler10
- RLS provides great IDE support9
- Prevents data races9
- Easy Deployment9
- Real multithreading8
- Painless dependency management8
- Good package management7
- Support on Other Languages5
- Type System1
- Hard to learn28
- Ownership learning curve24
- Unfriendly, verbose syntax12
- High size of builded executable4
- Many type operations make it difficult to follow4
- No jobs4
- Variable shadowing4
- Use it only for timeoass not in production1
related Rust posts
Hello!
I'm a developer for over 9 years, and most of this time I've been working with C# and it is paying my bills until nowadays. But I'm seeking to learn other languages and expand the possibilities for the next years.
Now the question... I know Ruby is far from dead but is it still worth investing time in learning it? Or would be better to take Python, Golang, or even Rust? Or maybe another language.
Thanks in advance.
Sentry's event processing pipeline, which is responsible for handling all of the ingested event data that makes it through to our offline task processing, is written primarily in Python.
For particularly intense code paths, like our source map processing pipeline, we have begun re-writing those bits in Rust. Rust’s lack of garbage collection makes it a particularly convenient language for embedding in Python. It allows us to easily build a Python extension where all memory is managed from the Python side (if the Python wrapper gets collected by the Python GC we clean up the Rust object as well).
Python
- Great libraries1.2K
- Readable code963
- Beautiful code847
- Rapid development788
- Large community691
- Open source438
- Elegant393
- Great community282
- Object oriented273
- Dynamic typing221
- Great standard library77
- Very fast60
- Functional programming55
- Easy to learn50
- Scientific computing46
- Great documentation35
- Productivity29
- Matlab alternative28
- Easy to read28
- Simple is better than complex24
- It's the way I think20
- Imperative19
- Very programmer and non-programmer friendly18
- Free18
- Machine learning support17
- Powerfull language17
- Fast and simple16
- Scripting14
- Explicit is better than implicit12
- Ease of development11
- Clear and easy and powerfull10
- Unlimited power9
- Import antigravity8
- It's lean and fun to code8
- Print "life is short, use python"7
- Python has great libraries for data processing7
- High Documented language6
- I love snakes6
- Readability counts6
- Rapid Prototyping6
- Now is better than never6
- Although practicality beats purity6
- Flat is better than nested6
- Great for tooling6
- There should be one-- and preferably only one --obvious6
- Fast coding and good for competitions6
- Web scraping5
- Lists, tuples, dictionaries5
- Great for analytics5
- Beautiful is better than ugly4
- Easy to learn and use4
- Easy to setup and run smooth4
- Multiple Inheritence4
- CG industry needs4
- Socially engaged community4
- Complex is better than complicated4
- Plotting4
- Simple and easy to learn4
- List comprehensions3
- Powerful language for AI3
- Flexible and easy3
- It is Very easy , simple and will you be love programmi3
- Many types of collections3
- If the implementation is easy to explain, it may be a g3
- If the implementation is hard to explain, it's a bad id3
- Special cases aren't special enough to break the rules3
- Pip install everything3
- No cruft3
- Generators3
- Import this3
- Batteries included2
- Securit2
- Can understand easily who are new to programming2
- Should START with this but not STICK with This2
- A-to-Z2
- Because of Netflix2
- Only one way to do it2
- Better outcome2
- Good for hacking2
- Best friend for NLP1
- Sexy af1
- Procedural programming1
- Automation friendly1
- Slow1
- Keep it simple0
- Powerful0
- Ni0
- Still divided between python 2 and python 353
- Performance impact28
- Poor syntax for anonymous functions26
- GIL22
- Package management is a mess19
- Too imperative-oriented14
- Hard to understand12
- Dynamic typing12
- Very slow12
- Indentations matter a lot8
- Not everything is expression8
- Incredibly slow7
- Explicit self parameter in methods7
- Requires C functions for dynamic modules6
- Poor DSL capabilities6
- No anonymous functions6
- Fake object-oriented programming5
- Threading5
- The "lisp style" whitespaces5
- Official documentation is unclear.5
- Hard to obfuscate5
- Circular import5
- Lack of Syntax Sugar leads to "the pyramid of doom"4
- The benevolent-dictator-for-life quit4
- Not suitable for autocomplete4
- Meta classes2
- Training wheels (forced indentation)1
related Python posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.
We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)
We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.
Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.
#FrameworksFullStack #Languages
- Static typing188
- Pattern-matching178
- Jvm175
- Scala is fun172
- Types138
- Concurrency95
- Actor library88
- Solve functional problems86
- Open source81
- Solve concurrency in a safer way80
- Functional44
- Fast24
- Generics23
- It makes me a better engineer18
- Syntactic sugar17
- Scalable13
- First-class functions10
- Type safety10
- Interactive REPL9
- Expressive8
- SBT7
- Case classes6
- Implicit parameters6
- Rapid and Safe Development using Functional Programming4
- JVM, OOP and Functional programming, and static typing4
- Object-oriented4
- Used by Twitter4
- Functional Proframming3
- Spark2
- Beautiful Code2
- Safety2
- Growing Community2
- DSL1
- Rich Static Types System and great Concurrency support1
- Naturally enforce high code quality1
- Akka Streams1
- Akka1
- Reactive Streams1
- Easy embedded DSLs1
- Mill build tool1
- Freedom to choose the right tools for a job0
- Slow compilation time11
- Multiple ropes and styles to hang your self7
- Too few developers available6
- Complicated subtyping4
- My coworkers using scala are racist against other stuff2
related Scala posts
I am new to Apache Spark and Scala both. I am basically a Java developer and have around 10 years of experience in Java.
I wish to work on some Machine learning or AI tech stacks. Please assist me in the tech stack and help make a clear Road Map. Any feedback is welcome.
Technologies apart from Scala and Spark are also welcome. Please note that the tools should be relevant to Machine Learning or Artificial Intelligence.
Lumosity is home to the world's largest cognitive training database, a responsibility we take seriously. For most of the company's history, our analysis of user behavior and training data has been powered by an event stream--first a simple Node.js pub/sub app, then a heavyweight Ruby app with stronger durability. Both supported decent throughput and latency, but they lacked some major features supported by existing open-source alternatives: replaying existing messages (also lacking in most message queue-based solutions), scaling out many different readers for the same stream, the ability to leverage existing solutions for reading and writing, and possibly most importantly: the ability to hire someone externally who already had expertise.
We ultimately migrated to Kafka in early- to mid-2016, citing both industry trends in companies we'd talked to with similar durability and throughput needs, the extremely strong documentation and community. We pored over Kyle Kingsbury's Jepsen post (https://aphyr.com/posts/293-jepsen-Kafka), as well as Jay Kreps' follow-up (http://blog.empathybox.com/post/62279088548/a-few-notes-on-kafka-and-jepsen), talked at length with Confluent folks and community members, and still wound up running parallel systems for quite a long time, but ultimately, we've been very, very happy. Understanding the internals and proper levers takes some commitment, but it's taken very little maintenance once configured. Since then, the Confluent Platform community has grown and grown; we've gone from doing most development using custom Scala consumers and producers to being 60/40 Kafka Streams/Connects.
We originally looked into Storm / Heron , and we'd moved on from Redis pub/sub. Heron looks great, but we already had a programming model across services that was more akin to consuming a message consumers than required a topology of bolts, etc. Heron also had just come out while we were starting to migrate things, and the community momentum and direction of Kafka felt more substantial than the older Storm. If we were to start the process over again today, we might check out Pulsar , although the ecosystem is much younger.
To find out more, read our 2017 engineering blog post about the migration!
- It is a lisp117
- Persistent data structures100
- Concise syntax100
- jvm-based language90
- Concurrency89
- Interactive repl81
- Code is data76
- Open source61
- Lazy data structures61
- Macros57
- Functional49
- Simplistic23
- Immutable by default22
- Excellent collections20
- Fast-growing community19
- Multiple host languages15
- Simple (not easy!)15
- Practical Lisp15
- Because it's really fun to use10
- Addictive10
- Community9
- Web friendly9
- Rapid development9
- It creates Reusable code9
- Minimalist8
- Programmable programming language6
- Java interop6
- Regained interest in programming5
- Compiles to JavaScript4
- Share a lot of code with clojurescript/use on frontend3
- EDN3
- Clojurescript1
- Cryptic stacktraces11
- Need to wrap basically every java lib5
- Toxic community4
- Good code heavily relies on local conventions3
- Tonns of abandonware3
- Slow application startup3
- Usable only with REPL1
- Hiring issues1
- It's a lisp1
- Bad documented libs1
- Macros are overused by devs1
- Tricky profiling1
- IDE with high learning curve1
- Configuration bolierplate1
- Conservative community1
- Have no good and fast fmt0
related Clojure posts
Stitch is run entirely on AWS. All of our transactional databases are run with Amazon RDS, and we rely on Amazon S3 for data persistence in various stages of our pipeline. Our product integrates with Amazon Redshift as a data destination, and we also use Redshift as an internal data warehouse (powered by Stitch, of course).
The majority of our services run on stateless Amazon EC2 instances that are managed by AWS OpsWorks. We recently introduced Kubernetes into our infrastructure to run the scheduled jobs that execute Singer code to extract data from various sources. Although we tend to be wary of shiny new toys, Kubernetes has proven to be a good fit for this problem, and its stability, strong community and helpful tooling have made it easy for us to incorporate into our operations.
While we continue to be happy with Clojure for our internal services, we felt that its relatively narrow adoption could impede Singer's growth. We chose Python both because it is well suited to the task, and it seems to have reached critical mass among data engineers. All that being said, the Singer spec is language agnostic, and integrations and libraries have been developed in JavaScript, Go, and Clojure.
Most of CircleCI is written in Clojure and it has been this way since almost the beginning. Early development included Rails, but by the time that CircleCI was released to the public, it was written entirely in Clojure. Clojure is still at our platform’s core. It helps having a common language across much of our stack to allow for our engineers to move between layers of the stack without much overhead.