What is Minio and what are its top alternatives?
Top Alternatives to Minio
- ceph
In computing,It is a free-software storage platform, implements object storage on a single distributed computer cluster, and provides interfaces for object-, block- and file-level storage. ...
- FreeNAS
It is the simplest way to create a centralized and easily accessible place for your data. Use it with ZFS to protect, store, backup, all of your data. It is used everywhere, for the home, small business, and the enterprise. ...
- Swift
Writing code is interactive and fun, the syntax is concise yet expressive, and apps run lightning-fast. Swift is ready for your next iOS and OS X project — or for addition into your current app — because Swift code works side-by-side with Objective-C. ...
- Rook
It is an open source cloud-native storage orchestrator for Kubernetes, providing the platform, framework, and support for a diverse set of storage solutions to natively integrate with cloud-native environments. ...
- Amazon S3
Amazon Simple Storage Service provides a fully redundant data storage infrastructure for storing and retrieving any amount of data, at any time, from anywhere on the web ...
- Google Cloud Storage
Google Cloud Storage allows world-wide storing and retrieval of any amount of data and at any time. It provides a simple programming interface which enables developers to take advantage of Google's own reliable and fast networking infrastructure to perform data operations in a secure and cost effective manner. If expansion needs arise, developers can benefit from the scalability provided by Google's infrastructure. ...
- Azure Storage
Azure Storage provides the flexibility to store and retrieve large amounts of unstructured data, such as documents and media files with Azure Blobs; structured nosql based data with Azure Tables; reliable messages with Azure Queues, and use SMB based Azure Files for migrating on-premises applications to the cloud. ...
- Amazon EBS
Amazon EBS volumes are network-attached, and persist independently from the life of an instance. Amazon EBS provides highly available, highly reliable, predictable storage volumes that can be attached to a running Amazon EC2 instance and exposed as a device within the instance. Amazon EBS is particularly suited for applications that require a database, file system, or access to raw block level storage. ...
Minio alternatives & related posts
- Open source4
- Block Storage2
- Obejct Storage1
- Storage Cluster1
- S3 Compatible1
- Object Storage1
related ceph posts
- Very Stable2
- Easy to install2
related FreeNAS posts
Swift
- Ios257
- Elegant179
- Not Objective-C125
- Backed by apple107
- Type inference92
- Generics60
- Playgrounds54
- Semicolon free49
- OSX38
- Tuples offer compound variables35
- Easy to learn24
- Clean Syntax23
- Open Source22
- Beautiful Code20
- Functional20
- Linux11
- Dynamic11
- Protocol-oriented programming10
- Promotes safe, readable code10
- Explicit optionals8
- No S-l-o-w JVM8
- Storyboard designer7
- Type safety5
- Super addicting language, great people, open, elegant5
- Optionals5
- Best UI concept5
- Feels like a better C++4
- Powerful4
- Swift is faster than Objective-C4
- Its friendly4
- Fail-safe4
- Highly Readable codes4
- Faster and looks better4
- Easy to Maintain3
- Easy to learn and work3
- Much more fun3
- Protocol extensions3
- Native3
- Its fun and damn fast3
- Strong Type safety3
- Protocol oriented programming2
- Esay2
- MacOS2
- Type Safe2
- All Cons C# and Java Swift Already has2
- Protocol as type2
- Objec1
- Can interface with C easily1
- Numbers with underbar1
- Optional chain1
- Runs Python 8 times faster1
- Actually don't have to own a mac1
- Free from Memory Leak1
- Swift is easier to understand for non-iOS developers.1
- Great for Multi-Threaded Programming1
- Must own a mac5
- Memory leaks are not uncommon2
- Very irritatingly picky about things that’s1
- Complicated process for exporting modules1
- Its classes compile to roughly 300 lines of assembly1
- Is a lot more effort than lua to make simple functions1
- Overly complex options makes it easy to create bad code0
related Swift posts
Hi Community! Trust everyone is keeping safe. I am exploring the idea of building a #Neobank (App) with end-to-end banking capabilities. In the process of exploring this space, I have come across multiple Apps (N26, Revolut, Monese, etc) and explored their stacks in detail. The confusion remains to be the Backend Tech to be used?
What would you go with considering all of the languages such as Node.js Java Rails Python are suggested by some person or the other. As a general trend, I have noticed the usage of Node with React on the front or Node with a combination of Kotlin and Swift. Please suggest what would be the right approach!
Excerpts from how we developed (and subsequently open sourced) Uber's cross-platform mobile architecture framework, RIBs , going from Objective-C to Swift in the process for iOS: https://github.com/uber/RIBs
Uber’s new application architecture (RIBs) extensively uses protocols to keep its various components decoupled and testable. We used this architecture for the first time in our new rider application and moved our primary language from Objective-C to Swift. Since Swift is a very static language, unit testing became problematic. Dynamic languages have good frameworks to build test mocks, stubs, or stand-ins by dynamically creating or modifying existing concrete classes.
Needless to say, we were not very excited about the additional complexity of manually writing and maintaining mock implementations for each of our thousands of protocols.
The information required to generate mock classes already exists in the Swift protocol. For Uber’s use case, we set out to create tooling that would let engineers automatically generate test mocks for any protocol they wanted by simply annotating them.
The iOS codebase for our rider application alone incorporates around 1,500 of these generated mocks. Without our code generation tool, all of these would have to be written and maintained by hand, which would have made testing much more time-intensive. Auto-generated mocks have contributed a lot to the unit test coverage that we have today.
We built these code generation tools ourselves for a number of reasons, including that there weren’t many open source tools available at the time we started our effort. Today, there are some great open source tools to generate resource accessors, like SwiftGen. And Sourcery can help you with generic code generation needs:
https://eng.uber.com/code-generation/ https://eng.uber.com/driver-app-ribs-architecture/
(GitHub : https://github.com/uber/RIBs )
- Minio Integration3
- Open Source1
- Ceph is difficult2
- Slow1
related Rook posts
Amazon S3
- Reliable592
- Scalable493
- Cheap458
- Simple & easy329
- Many sdks83
- Logical30
- Easy Setup13
- 1000+ POPs11
- REST API11
- Secure6
- Easy4
- Plug and play4
- Web UI for uploading files3
- Flexible2
- Faster on response2
- GDPR ready2
- Easy integration with CloudFront1
- Easy to use1
- Plug-gable1
- Permissions take some time to get right7
- Takes time/work to organize buckets & folders properly6
- Requires a credit card5
- Complex to set up3
related Amazon S3 posts
To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.
Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.
We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.
Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.
Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.
#BigData #AWS #DataScience #DataEngineering
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
- Scalable28
- Cheap19
- Reliable14
- Easy9
- Chealp3
- More praticlal and easy1
related Google Cloud Storage posts





In #Aliadoc, we're exploring the crowdfunding option to get traction before launch. We are building a SaaS platform for website design customization.
For the Admin UI and website editor we use React and we're currently transitioning from a Create React App setup to a custom one because our needs have become more specific. We use CloudFlare as much as possible, it's a great service.
For routing dynamic resources and proxy tasks to feed websites to the editor we leverage CloudFlare Workers for improved responsiveness. We use Firebase for our hosting needs and user authentication while also using several Cloud Functions for Firebase to interact with other services along with Google App Engine and Google Cloud Storage, but also the Real Time Database is on the radar for collaborative website editing.
We generally hate configuration but honestly because of the stage of our project we lack resources for doing heavy sysops work. So we are basically just relying on Serverless technologies as much as we can to do all server side processing.
Visual Studio Code definitively makes programming a much easier and enjoyable task, we just love it. We combine it with Bitbucket for our source code control needs.
- All-in-one storage solution23
- Pay only for data used regardless of disk size15
- Shared drive mapping9
- Cost-effective2
- Cheapest hot and cloud storage2
- Direct support is not provided by Azure storage2
related Azure Storage posts
- Point-in-time snapshots36
- Data reliability27
- Configurable i/o performance19
related Amazon EBS posts
We are looking for a centralised monitoring solution for our application deployed on Amazon EKS. We would like to monitor using metrics from Kubernetes, AWS services (NeptuneDB, AWS Elastic Load Balancing (ELB), Amazon EBS, Amazon S3, etc) and application microservice's custom metrics.
We are expected to use around 80 microservices (not replicas). I think a total of 200-250 microservices will be there in the system with 10-12 slave nodes.
We tried Prometheus but it looks like maintenance is a big issue. We need to manage scaling, maintaining the storage, and dealing with multiple exporters and Grafana. I felt this itself needs few dedicated resources (at least 2-3 people) to manage. Not sure if I am thinking in the correct direction. Please confirm.
You mentioned Datadog and Sysdig charges per host. Does it charge per slave node?