What is Jupyter and what are its top alternatives?
Top Alternatives to Jupyter
- Apache Zeppelin
A web-based notebook that enables interactive data analytics. You can make beautiful data-driven, interactive and collaborative documents with SQL, Scala and more. ...
- PyCharm
PyCharm’s smart code editor provides first-class support for Python, JavaScript, CoffeeScript, TypeScript, CSS, popular template languages and more. Take advantage of language-aware code completion, error detection, and on-the-fly code fixes! ...
- IPython
It provides a rich architecture for interactive computing with a powerful interactive shell, a kernel for Jupyter. It has a support for interactive data visualization and use of GUI toolkits. Flexible, embeddable interpreters to load into your own projects. Easy to use, high performance tools for parallel computing. ...
- Spyder
It is a powerful scientific environment written in Python, for Python, and designed by and for scientists, engineers and data analysts. ...
- Anaconda
A free and open-source distribution of the Python and R programming languages for scientific computing, that aims to simplify package management and deployment. Package versions are managed by the package management system conda. ...
- RStudio
An integrated development environment for R, with a console, syntax-highlighting editor that supports direct code execution. Publish and distribute data products across your organization. One button deployment of Shiny applications, R Markdown reports, Jupyter Notebooks, and more. Collections of R functions, data, and compiled code in a well-defined format. You can expand the types of analyses you do by adding packages. ...
- Python
Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...
- JavaScript
JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles. ...
Jupyter alternatives & related posts
- In-line code execution using paragraphs7
- Cluster integration5
- Multi-User Capability4
- In-line graphing4
- Zeppelin context to exchange data between languages4
- Privacy configuration of the end users2
- Execution progress included2
- Multi-user with kerberos2
- Allows to close browser and reopen for result later2
related Apache Zeppelin posts
- Smart auto-completion112
- Intelligent code analysis93
- Powerful refactoring77
- Virtualenv integration60
- Git integration54
- Support for Django22
- Multi-database integration11
- VIM integration7
- Vagrant integration4
- In-tool Bash and Python shell3
- Plugin architecture2
- Docker2
- Django Implemented1
- Debug mode support docker1
- Emacs keybinds1
- Perforce integration1
- Slow startup10
- Not very flexible7
- Resource hog6
- Periodic slow menu response3
- Pricey for full features1
related PyCharm posts
UPDATE: Thanks for the great response. I am going to start with VSCode based on the open source and free version that will allow me to grow into other languages, but not cost me a license ..yet.
I have been working with software development for 12 years, but I am just beginning my journey to learn to code. I am starting with Python following the suggestion of some of my coworkers. They are split between Eclipse and IntelliJ IDEA for IDEs that they use and PyCharm is new to me. Which IDE would you suggest for a beginner that will allow expansion to Java, JavaScript, and eventually AngularJS and possibly mobile applications?
I am a QA heading to a new company where they all generally use Visual Studio Code, my experience is with IntelliJ IDEA and PyCharm. The language they use is JavaScript and so I will be writing my test framework in javaScript so the devs can more easily write tests without context switching.
My 2 questions: Does VS Code have Cucumber Plugins allowing me to write behave tests? And more importantly, does VS Code have the same refactoring tools that IntelliJ IDEA has? I love that I have easy access to a range of tools that allow me to refactor and simplify my code, making code writing really easy.
- Interactive exploration then save to a script1
- Persistent history between sessions1
- It's magical are just that1
- Help in a keystroke1
related IPython posts
Jupyter Anaconda Pandas IPython
A great way to prototype your data analytic modules. The use of the package is simple and user-friendly and the migration from ipython to python is fairly simple: a lot of cleaning, but no more.
The negative aspect comes when you want to streamline your productive system or does CI with your anaconda environment: - most tools don't accept conda environments (as smoothly as pip requirements) - the conda environments (even with miniconda) have quite an overhead
- Variable Explorer6
- More tools for Python2
- Free with anaconda2
- Intellisense1
- Slow to fire up1
related Spyder posts
Anaconda
related Anaconda posts
Which one of these should I install? I am a beginner and starting to learn to code. I have Anaconda, Visual Studio Code ( vscode recommended me to install Git) and I am learning Python, JavaScript, and MySQL for educational purposes. Also if you have any other pro-tips or advice for me please share.
Yours thankfully, Darkhiem
I am going to learn machine learning and self host an online IDE, the tool that i may use is Python, Anaconda, various python library and etc. which tools should i go for? this may include Java development, web development. Now i have 1 more candidate which are visual studio code online (code server). i will host on google cloud
RStudio
- Visual editor for R Markdown documents3
- In-line code execution using blocks2
- Can be themed1
- In-line graphing support1
- Latex support1
- Sophitiscated statistical packages1
- Supports Rcpp, python and SQL1
related RStudio posts
Python
- Great libraries1.2K
- Readable code961
- Beautiful code847
- Rapid development787
- Large community689
- Open source437
- Elegant393
- Great community282
- Object oriented272
- Dynamic typing220
- Great standard library77
- Very fast60
- Functional programming55
- Easy to learn49
- Scientific computing45
- Great documentation35
- Productivity29
- Matlab alternative28
- Easy to read28
- Simple is better than complex24
- It's the way I think20
- Imperative19
- Free18
- Very programmer and non-programmer friendly18
- Machine learning support17
- Powerfull language17
- Fast and simple16
- Scripting14
- Explicit is better than implicit12
- Ease of development11
- Clear and easy and powerfull10
- Unlimited power9
- It's lean and fun to code8
- Import antigravity8
- Print "life is short, use python"7
- Python has great libraries for data processing7
- Great for tooling6
- Rapid Prototyping6
- Readability counts6
- Fast coding and good for competitions6
- There should be one-- and preferably only one --obvious6
- High Documented language6
- I love snakes6
- Although practicality beats purity6
- Flat is better than nested6
- Now is better than never6
- Great for analytics5
- Lists, tuples, dictionaries5
- Easy to learn and use4
- Web scraping4
- Simple and easy to learn4
- Easy to setup and run smooth4
- Plotting4
- Beautiful is better than ugly4
- Multiple Inheritence4
- Complex is better than complicated4
- Socially engaged community4
- CG industry needs4
- Flexible and easy3
- Many types of collections3
- If the implementation is easy to explain, it may be a g3
- If the implementation is hard to explain, it's a bad id3
- Special cases aren't special enough to break the rules3
- Pip install everything3
- List comprehensions3
- No cruft3
- Generators3
- Import this3
- It is Very easy , simple and will you be love programmi3
- Can understand easily who are new to programming2
- Powerful language for AI2
- Should START with this but not STICK with This2
- A-to-Z2
- Because of Netflix2
- Only one way to do it2
- Better outcome2
- Good for hacking2
- Securit2
- Batteries included2
- Automation friendly1
- Sexy af1
- Slow1
- Procedural programming1
- Ni0
- Powerful0
- Keep it simple0
- Still divided between python 2 and python 353
- Performance impact28
- Poor syntax for anonymous functions26
- GIL22
- Package management is a mess19
- Too imperative-oriented14
- Hard to understand12
- Dynamic typing12
- Very slow12
- Indentations matter a lot8
- Not everything is expression8
- Incredibly slow7
- Explicit self parameter in methods7
- Requires C functions for dynamic modules6
- Poor DSL capabilities6
- No anonymous functions6
- Fake object-oriented programming5
- Threading5
- The "lisp style" whitespaces5
- Official documentation is unclear.5
- Hard to obfuscate5
- Circular import5
- Lack of Syntax Sugar leads to "the pyramid of doom"4
- The benevolent-dictator-for-life quit4
- Not suitable for autocomplete4
- Meta classes2
- Training wheels (forced indentation)1
related Python posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.
We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)
We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.
Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.
#FrameworksFullStack #Languages
JavaScript
- Can be used on frontend/backend1.7K
- It's everywhere1.5K
- Lots of great frameworks1.2K
- Fast897
- Light weight745
- Flexible425
- You can't get a device today that doesn't run js392
- Non-blocking i/o286
- Ubiquitousness237
- Expressive191
- Extended functionality to web pages55
- Relatively easy language49
- Executed on the client side46
- Relatively fast to the end user30
- Pure Javascript25
- Functional programming21
- Async15
- Full-stack13
- Setup is easy12
- Its everywhere12
- Future Language of The Web12
- Because I love functions11
- JavaScript is the New PHP11
- Like it or not, JS is part of the web standard10
- Expansive community9
- Everyone use it9
- Can be used in backend, frontend and DB9
- Easy9
- Most Popular Language in the World8
- Powerful8
- Can be used both as frontend and backend as well8
- For the good parts8
- No need to use PHP8
- Easy to hire developers8
- Agile, packages simple to use7
- Love-hate relationship7
- Photoshop has 3 JS runtimes built in7
- Evolution of C7
- It's fun7
- Hard not to use7
- Versitile7
- Its fun and fast7
- Nice7
- Popularized Class-Less Architecture & Lambdas7
- Supports lambdas and closures7
- It let's me use Babel & Typescript6
- Can be used on frontend/backend/Mobile/create PRO Ui6
- 1.6K Can be used on frontend/backend6
- Client side JS uses the visitors CPU to save Server Res6
- Easy to make something6
- Clojurescript5
- Promise relationship5
- Stockholm Syndrome5
- Function expressions are useful for callbacks5
- Scope manipulation5
- Everywhere5
- Client processing5
- What to add5
- Because it is so simple and lightweight4
- Only Programming language on browser4
- Test1
- Hard to learn1
- Test21
- Not the best1
- Easy to understand1
- Subskill #41
- Easy to learn1
- Hard 彤0
- A constant moving target, too much churn22
- Horribly inconsistent20
- Javascript is the New PHP15
- No ability to monitor memory utilitization9
- Shows Zero output in case of ANY error8
- Thinks strange results are better than errors7
- Can be ugly6
- No GitHub3
- Slow2
- HORRIBLE DOCUMENTS, faulty code, repo has bugs0
related JavaScript posts
Oof. I have truly hated JavaScript for a long time. Like, for over twenty years now. Like, since the Clinton administration. It's always been a nightmare to deal with all of the aspects of that silly language.
But wowza, things have changed. Tooling is just way, way better. I'm primarily web-oriented, and using React and Apollo together the past few years really opened my eyes to building rich apps. And I deeply apologize for using the phrase rich apps; I don't think I've ever said such Enterprisey words before.
But yeah, things are different now. I still love Rails, and still use it for a lot of apps I build. But it's that silly rich apps phrase that's the problem. Users have way more comprehensive expectations than they did even five years ago, and the JS community does a good job at building tools and tech that tackle the problems of making heavy, complicated UI and frontend work.
Obviously there's a lot of things happening here, so just saying "JavaScript isn't terrible" might encompass a huge amount of libraries and frameworks. But if you're like me, yeah, give things another shot- I'm somehow not hating on JavaScript anymore and... gulp... I kinda love it.
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark