Alternatives to Google Kubernetes Engine logo

Alternatives to Google Kubernetes Engine

Google App Engine, Red Hat OpenShift, Google Compute Engine, Kubernetes, and JavaScript are the most popular alternatives and competitors to Google Kubernetes Engine.
1.1K
809
+ 1
78

What is Google Kubernetes Engine and what are its top alternatives?

Google Kubernetes Engine (GKE) is a managed Kubernetes service offered by Google Cloud Platform. It allows users to deploy, manage, and scale containerized applications using Kubernetes on Google's infrastructure. Key features include automatic scaling, monitoring, logging, and integration with other Google Cloud services. However, some limitations of GKE include pricing based on resource usage and potentially complex networking configurations for certain use cases.

  1. Amazon Elastic Kubernetes Service (EKS): Amazon EKS is a managed Kubernetes service that allows you to easily deploy, manage, and scale containerized applications using Kubernetes on AWS. Key features include seamless integration with other AWS services, high availability, and automatic updates. Pros of EKS compared to GKE include tighter integration with AWS services, while cons include potentially higher costs and steeper learning curve for AWS-specific features.
  2. Microsoft Azure Kubernetes Service (AKS): Azure AKS is a managed Kubernetes service on Microsoft Azure designed to simplify the process of deploying, managing, and scaling containerized applications using Kubernetes. Key features include seamless integration with Azure services, automatic scaling, and security monitoring. Pros of AKS compared to GKE include deep integration with Azure services, while cons include possible limitations in advanced networking features.
  3. Rancher: Rancher is an open-source container management platform that supports Kubernetes for managing and orchestrating containers across multiple environments. Key features include centralized management, multi-cluster support, and advanced networking options. Pros of Rancher compared to GKE include flexibility in managing multiple clusters, while cons include self-hosted setup and maintenance overhead.
  4. Red Hat OpenShift: Red Hat OpenShift is a Kubernetes-based container platform that provides automation and orchestration for deploying applications in containers. Key features include developer-friendly tools, built-in security capabilities, and support for hybrid cloud environments. Pros of OpenShift compared to GKE include enterprise-grade features, while cons include potential complexity in setup and management.
  5. D2iQ Kaptain: D2iQ Kaptain is a Kubernetes-based platform that enables simplified deployment, scaling, and continuous delivery of containerized applications. Key features include application lifecycle management, observability tools, and automated operations. Pros of Kaptain compared to GKE include advanced automation capabilities, while cons include possible complexity in configuration for certain use cases.
  6. VMware Tanzu Kubernetes Grid: Tanzu Kubernetes Grid is a Kubernetes runtime that simplifies the deployment and management of Kubernetes across multiple environments. Key features include support for multi-cloud deployments, automated upgrades, and streamlined operations. Pros of Tanzu Kubernetes Grid compared to GKE include compatibility with VMware ecosystem, while cons may include specialized knowledge required for VMware integration.
  7. DigitalOcean Kubernetes: DigitalOcean Kubernetes is a managed Kubernetes service that enables developers to deploy, manage, and scale containerized applications using Kubernetes. Key features include simplified setup, seamless integration with DigitalOcean services, and transparent pricing. Pros of DigitalOcean Kubernetes compared to GKE include simplicity and cost-effectiveness, while potential cons include limited scalability options for complex deployments.
  8. IBM Cloud Kubernetes Service: IBM Cloud Kubernetes Service is a managed Kubernetes offering on IBM Cloud that provides a secure and scalable platform for deploying containerized applications. Key features include enterprise-grade security, integration with IBM Cloud services, and support for hybrid cloud environments. Pros of IBM Cloud Kubernetes Service compared to GKE include IBM's enterprise support, while cons may include pricing based on usage and potential complexity in integration with non-IBM services.
  9. KubeSphere: KubeSphere is an open-source Kubernetes platform that simplifies the management of containerized workloads and supports multi-tenant and multi-cluster deployments. Key features include a user-friendly interface, integrated DevOps tools, and application marketplace. Pros of KubeSphere compared to GKE include open-source community support, while cons may include limitations in enterprise-grade features and support.
  10. Canonical Kubernetes: Canonical Kubernetes is a distribution of Kubernetes built by Canonical, the company behind Ubuntu Linux. Key features include optimization for Ubuntu and other Debian-based systems, ease of installation, and support for both on-premises and cloud deployments. Pros of Canonical Kubernetes compared to GKE include compatibility with Ubuntu ecosystem, while potential cons may include specific expertise needed for customization and maintenance.

Top Alternatives to Google Kubernetes Engine

  • Google App Engine
    Google App Engine

    Google has a reputation for highly reliable, high performance infrastructure. With App Engine you can take advantage of the 10 years of knowledge Google has in running massively scalable, performance driven systems. App Engine applications are easy to build, easy to maintain, and easy to scale as your traffic and data storage needs grow. ...

  • Red Hat OpenShift
    Red Hat OpenShift

    OpenShift is Red Hat's Cloud Computing Platform as a Service (PaaS) offering. OpenShift is an application platform in the cloud where application developers and teams can build, test, deploy, and run their applications. ...

  • Google Compute Engine
    Google Compute Engine

    Google Compute Engine is a service that provides virtual machines that run on Google infrastructure. Google Compute Engine offers scale, performance, and value that allows you to easily launch large compute clusters on Google's infrastructure. There are no upfront investments and you can run up to thousands of virtual CPUs on a system that has been designed from the ground up to be fast, and to offer strong consistency of performance. ...

  • Kubernetes
    Kubernetes

    Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions. ...

  • JavaScript
    JavaScript

    JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles. ...

  • Git
    Git

    Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...

  • GitHub
    GitHub

    GitHub is the best place to share code with friends, co-workers, classmates, and complete strangers. Over three million people use GitHub to build amazing things together. ...

  • Python
    Python

    Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...

Google Kubernetes Engine alternatives & related posts

Google App Engine logo

Google App Engine

10.1K
7.9K
610
Build web applications on the same scalable systems that power Google applications
10.1K
7.9K
+ 1
610
PROS OF GOOGLE APP ENGINE
  • 145
    Easy to deploy
  • 106
    Auto scaling
  • 80
    Good free plan
  • 62
    Easy management
  • 56
    Scalability
  • 35
    Low cost
  • 32
    Comprehensive set of features
  • 28
    All services in one place
  • 22
    Simple scaling
  • 19
    Quick and reliable cloud servers
  • 6
    Granular Billing
  • 5
    Easy to develop and unit test
  • 4
    Monitoring gives comprehensive set of key indicators
  • 3
    Really easy to quickly bring up a full stack
  • 3
    Create APIs quickly with cloud endpoints
  • 2
    Mostly up
  • 2
    No Ops
CONS OF GOOGLE APP ENGINE
    Be the first to leave a con

    related Google App Engine posts

    Dmitry Mukhin

    Uploadcare has built an infinitely scalable infrastructure by leveraging AWS. Building on top of AWS allows us to process 350M daily requests for file uploads, manipulations, and deliveries. When we started in 2011 the only cloud alternative to AWS was Google App Engine which was a no-go for a rather complex solution we wanted to build. We also didn’t want to buy any hardware or use co-locations.

    Our stack handles receiving files, communicating with external file sources, managing file storage, managing user and file data, processing files, file caching and delivery, and managing user interface dashboards.

    At its core, Uploadcare runs on Python. The Europython 2011 conference in Florence really inspired us, coupled with the fact that it was general enough to solve all of our challenges informed this decision. Additionally we had prior experience working in Python.

    We chose to build the main application with Django because of its feature completeness and large footprint within the Python ecosystem.

    All the communications within our ecosystem occur via several HTTP APIs, Redis, Amazon S3, and Amazon DynamoDB. We decided on this architecture so that our our system could be scalable in terms of storage and database throughput. This way we only need Django running on top of our database cluster. We use PostgreSQL as our database because it is considered an industry standard when it comes to clustering and scaling.

    See more
    Nick Rockwell
    SVP, Engineering at Fastly · | 12 upvotes · 429.9K views

    So, the shift from Amazon EC2 to Google App Engine and generally #AWS to #GCP was a long decision and in the end, it's one that we've taken with eyes open and that we reserve the right to modify at any time. And to be clear, we continue to do a lot of stuff with AWS. But, by default, the content of the decision was, for our consumer-facing products, we're going to use GCP first. And if there's some reason why we don't think that's going to work out great, then we'll happily use AWS. In practice, that hasn't really happened. We've been able to meet almost 100% of our needs in GCP.

    So it's basically mostly Google Kubernetes Engine , we're mostly running stuff on Kubernetes right now.

    #AWStoGCPmigration #cloudmigration #migration

    See more
    Red Hat OpenShift logo

    Red Hat OpenShift

    1.5K
    1.4K
    517
    Red Hat's free Platform as a Service (PaaS) for hosting Java, PHP, Ruby, Python, Node.js, and Perl apps
    1.5K
    1.4K
    + 1
    517
    PROS OF RED HAT OPENSHIFT
    • 99
      Good free plan
    • 63
      Open Source
    • 47
      Easy setup
    • 43
      Nodejs support
    • 42
      Well documented
    • 32
      Custom domains
    • 28
      Mongodb support
    • 27
      Clean and simple architecture
    • 25
      PHP support
    • 21
      Customizable environments
    • 11
      Ability to run CRON jobs
    • 9
      Easier than Heroku for a WordPress blog
    • 8
      Easy deployment
    • 7
      PostgreSQL support
    • 7
      Autoscaling
    • 7
      Good balance between Heroku and AWS for flexibility
    • 5
      Free, Easy Setup, Lot of Gear or D.I.Y Gear
    • 4
      Shell access to gears
    • 3
      Great Support
    • 3
      High Security
    • 3
      Logging & Metrics
    • 2
      Cloud Agnostic
    • 2
      Runs Anywhere - AWS, GCP, Azure
    • 2
      No credit card needed
    • 2
      Because it is easy to manage
    • 2
      Secure
    • 2
      Meteor support
    • 2
      Overly complicated and over engineered in majority of e
    • 2
      Golang support
    • 2
      Its free and offer custom domain usage
    • 1
      Autoscaling at a good price point
    • 1
      Easy setup and great customer support
    • 1
      MultiCloud
    • 1
      Great free plan with excellent support
    • 1
      This is the only free one among the three as of today
    CONS OF RED HAT OPENSHIFT
    • 2
      Decisions are made for you, limiting your options
    • 2
      License cost
    • 1
      Behind, sometimes severely, the upstreams

    related Red Hat OpenShift posts

    Conor Myhrvold
    Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 11.8M views

    How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

    Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

    Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

    https://eng.uber.com/distributed-tracing/

    (GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

    Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

    See more
    Michael Ionita

    We use Kubernetes because we decided to migrate to a hosted cluster (not AWS) and still be able to scale our clusters up and down depending on load. By wrapping it with OpenShift we are now able to easily adapt to demand but also able to separate concerns into separate Pods depending on use-cases we have.

    See more
    Google Compute Engine logo

    Google Compute Engine

    12.2K
    9.1K
    423
    Run large-scale workloads on virtual machines hosted on Google's infrastructure.
    12.2K
    9.1K
    + 1
    423
    PROS OF GOOGLE COMPUTE ENGINE
    • 87
      Backed by google
    • 79
      Easy to scale
    • 75
      High-performance virtual machines
    • 57
      Performance
    • 52
      Fast and easy provisioning
    • 15
      Load balancing
    • 12
      Compliance and security
    • 9
      Kubernetes
    • 8
      GitHub Integration
    • 7
      Consistency
    • 4
      Free $300 credit (12 months)
    • 3
      One Click Setup Options
    • 3
      Good documentation
    • 2
      Great integration and product support
    • 2
      Escort
    • 2
      Ease of Use and GitHub support
    • 1
      Nice UI
    • 1
      Easy Snapshot and Backup feature
    • 1
      Integration with mobile notification services
    • 1
      Low cost
    • 1
      Support many OS
    • 1
      Very Reliable
    CONS OF GOOGLE COMPUTE ENGINE
      Be the first to leave a con

      related Google Compute Engine posts

      Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.

      Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!

      Check Out My Architecture: CLICK ME

      Check out the GitHub repo attached

      See more

      I have got a small radio service running on Node.js. Front end is written with React and packed with Webpack . I use Docker for my #DeploymentWorkflow along with Docker Swarm and GitLab CI on a single Google Compute Engine instance, which is also a runner itself. Pretty unscalable decision but it works great for tiny projects. The project is available on https://fridgefm.com

      See more
      Kubernetes logo

      Kubernetes

      59.5K
      51.5K
      681
      Manage a cluster of Linux containers as a single system to accelerate Dev and simplify Ops
      59.5K
      51.5K
      + 1
      681
      PROS OF KUBERNETES
      • 166
        Leading docker container management solution
      • 129
        Simple and powerful
      • 107
        Open source
      • 76
        Backed by google
      • 58
        The right abstractions
      • 25
        Scale services
      • 20
        Replication controller
      • 11
        Permission managment
      • 9
        Supports autoscaling
      • 8
        Simple
      • 8
        Cheap
      • 6
        Self-healing
      • 5
        Open, powerful, stable
      • 5
        Reliable
      • 5
        No cloud platform lock-in
      • 5
        Promotes modern/good infrascture practice
      • 4
        Scalable
      • 4
        Quick cloud setup
      • 3
        Custom and extensibility
      • 3
        Captain of Container Ship
      • 3
        Cloud Agnostic
      • 3
        Backed by Red Hat
      • 3
        Runs on azure
      • 3
        A self healing environment with rich metadata
      • 2
        Everything of CaaS
      • 2
        Gke
      • 2
        Golang
      • 2
        Easy setup
      • 2
        Expandable
      • 2
        Sfg
      CONS OF KUBERNETES
      • 16
        Steep learning curve
      • 15
        Poor workflow for development
      • 8
        Orchestrates only infrastructure
      • 4
        High resource requirements for on-prem clusters
      • 2
        Too heavy for simple systems
      • 1
        Additional vendor lock-in (Docker)
      • 1
        More moving parts to secure
      • 1
        Additional Technology Overhead

      related Kubernetes posts

      Conor Myhrvold
      Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 11.8M views

      How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

      Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

      Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

      https://eng.uber.com/distributed-tracing/

      (GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

      Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

      See more
      Ashish Singh
      Tech Lead, Big Data Platform at Pinterest · | 38 upvotes · 3.1M views

      To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

      Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

      We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

      Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

      Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

      #BigData #AWS #DataScience #DataEngineering

      See more
      JavaScript logo

      JavaScript

      357.6K
      271.8K
      8.1K
      Lightweight, interpreted, object-oriented language with first-class functions
      357.6K
      271.8K
      + 1
      8.1K
      PROS OF JAVASCRIPT
      • 1.7K
        Can be used on frontend/backend
      • 1.5K
        It's everywhere
      • 1.2K
        Lots of great frameworks
      • 898
        Fast
      • 745
        Light weight
      • 425
        Flexible
      • 392
        You can't get a device today that doesn't run js
      • 286
        Non-blocking i/o
      • 237
        Ubiquitousness
      • 191
        Expressive
      • 55
        Extended functionality to web pages
      • 49
        Relatively easy language
      • 46
        Executed on the client side
      • 30
        Relatively fast to the end user
      • 25
        Pure Javascript
      • 21
        Functional programming
      • 15
        Async
      • 13
        Full-stack
      • 12
        Setup is easy
      • 12
        Its everywhere
      • 12
        Future Language of The Web
      • 11
        Because I love functions
      • 11
        JavaScript is the New PHP
      • 10
        Like it or not, JS is part of the web standard
      • 9
        Expansive community
      • 9
        Everyone use it
      • 9
        Can be used in backend, frontend and DB
      • 9
        Easy
      • 8
        Most Popular Language in the World
      • 8
        Powerful
      • 8
        Can be used both as frontend and backend as well
      • 8
        For the good parts
      • 8
        No need to use PHP
      • 8
        Easy to hire developers
      • 7
        Agile, packages simple to use
      • 7
        Love-hate relationship
      • 7
        Photoshop has 3 JS runtimes built in
      • 7
        Evolution of C
      • 7
        It's fun
      • 7
        Hard not to use
      • 7
        Versitile
      • 7
        Its fun and fast
      • 7
        Nice
      • 7
        Popularized Class-Less Architecture & Lambdas
      • 7
        Supports lambdas and closures
      • 6
        It let's me use Babel & Typescript
      • 6
        Can be used on frontend/backend/Mobile/create PRO Ui
      • 6
        1.6K Can be used on frontend/backend
      • 6
        Client side JS uses the visitors CPU to save Server Res
      • 6
        Easy to make something
      • 5
        Clojurescript
      • 5
        Promise relationship
      • 5
        Stockholm Syndrome
      • 5
        Function expressions are useful for callbacks
      • 5
        Scope manipulation
      • 5
        Everywhere
      • 5
        Client processing
      • 5
        What to add
      • 4
        Because it is so simple and lightweight
      • 4
        Only Programming language on browser
      • 1
        Test
      • 1
        Hard to learn
      • 1
        Test2
      • 1
        Not the best
      • 1
        Easy to understand
      • 1
        Subskill #4
      • 1
        Easy to learn
      • 0
        Hard 彤
      CONS OF JAVASCRIPT
      • 22
        A constant moving target, too much churn
      • 20
        Horribly inconsistent
      • 15
        Javascript is the New PHP
      • 9
        No ability to monitor memory utilitization
      • 8
        Shows Zero output in case of ANY error
      • 7
        Thinks strange results are better than errors
      • 6
        Can be ugly
      • 3
        No GitHub
      • 2
        Slow
      • 0
        HORRIBLE DOCUMENTS, faulty code, repo has bugs

      related JavaScript posts

      Zach Holman

      Oof. I have truly hated JavaScript for a long time. Like, for over twenty years now. Like, since the Clinton administration. It's always been a nightmare to deal with all of the aspects of that silly language.

      But wowza, things have changed. Tooling is just way, way better. I'm primarily web-oriented, and using React and Apollo together the past few years really opened my eyes to building rich apps. And I deeply apologize for using the phrase rich apps; I don't think I've ever said such Enterprisey words before.

      But yeah, things are different now. I still love Rails, and still use it for a lot of apps I build. But it's that silly rich apps phrase that's the problem. Users have way more comprehensive expectations than they did even five years ago, and the JS community does a good job at building tools and tech that tackle the problems of making heavy, complicated UI and frontend work.

      Obviously there's a lot of things happening here, so just saying "JavaScript isn't terrible" might encompass a huge amount of libraries and frameworks. But if you're like me, yeah, give things another shot- I'm somehow not hating on JavaScript anymore and... gulp... I kinda love it.

      See more
      Conor Myhrvold
      Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 11.8M views

      How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

      Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

      Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

      https://eng.uber.com/distributed-tracing/

      (GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

      Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

      See more
      Git logo

      Git

      295.7K
      177.2K
      6.6K
      Fast, scalable, distributed revision control system
      295.7K
      177.2K
      + 1
      6.6K
      PROS OF GIT
      • 1.4K
        Distributed version control system
      • 1.1K
        Efficient branching and merging
      • 959
        Fast
      • 845
        Open source
      • 726
        Better than svn
      • 368
        Great command-line application
      • 306
        Simple
      • 291
        Free
      • 232
        Easy to use
      • 222
        Does not require server
      • 27
        Distributed
      • 22
        Small & Fast
      • 18
        Feature based workflow
      • 15
        Staging Area
      • 13
        Most wide-spread VSC
      • 11
        Role-based codelines
      • 11
        Disposable Experimentation
      • 7
        Frictionless Context Switching
      • 6
        Data Assurance
      • 5
        Efficient
      • 4
        Just awesome
      • 3
        Github integration
      • 3
        Easy branching and merging
      • 2
        Compatible
      • 2
        Flexible
      • 2
        Possible to lose history and commits
      • 1
        Rebase supported natively; reflog; access to plumbing
      • 1
        Light
      • 1
        Team Integration
      • 1
        Fast, scalable, distributed revision control system
      • 1
        Easy
      • 1
        Flexible, easy, Safe, and fast
      • 1
        CLI is great, but the GUI tools are awesome
      • 1
        It's what you do
      • 0
        Phinx
      CONS OF GIT
      • 16
        Hard to learn
      • 11
        Inconsistent command line interface
      • 9
        Easy to lose uncommitted work
      • 7
        Worst documentation ever possibly made
      • 5
        Awful merge handling
      • 3
        Unexistent preventive security flows
      • 3
        Rebase hell
      • 2
        When --force is disabled, cannot rebase
      • 2
        Ironically even die-hard supporters screw up badly
      • 1
        Doesn't scale for big data

      related Git posts

      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 10.5M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more
      Tymoteusz Paul
      Devops guy at X20X Development LTD · | 23 upvotes · 9.4M views

      Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

      It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

      I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

      We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

      If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

      The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

      Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

      See more
      GitHub logo

      GitHub

      283.6K
      247.7K
      10.3K
      Powerful collaboration, review, and code management for open source and private development projects
      283.6K
      247.7K
      + 1
      10.3K
      PROS OF GITHUB
      • 1.8K
        Open source friendly
      • 1.5K
        Easy source control
      • 1.3K
        Nice UI
      • 1.1K
        Great for team collaboration
      • 867
        Easy setup
      • 504
        Issue tracker
      • 486
        Great community
      • 483
        Remote team collaboration
      • 451
        Great way to share
      • 442
        Pull request and features planning
      • 147
        Just works
      • 132
        Integrated in many tools
      • 121
        Free Public Repos
      • 116
        Github Gists
      • 112
        Github pages
      • 83
        Easy to find repos
      • 62
        Open source
      • 60
        It's free
      • 60
        Easy to find projects
      • 56
        Network effect
      • 49
        Extensive API
      • 43
        Organizations
      • 42
        Branching
      • 34
        Developer Profiles
      • 32
        Git Powered Wikis
      • 30
        Great for collaboration
      • 24
        It's fun
      • 23
        Clean interface and good integrations
      • 22
        Community SDK involvement
      • 20
        Learn from others source code
      • 16
        Because: Git
      • 14
        It integrates directly with Azure
      • 10
        Standard in Open Source collab
      • 10
        Newsfeed
      • 8
        It integrates directly with Hipchat
      • 8
        Fast
      • 8
        Beautiful user experience
      • 7
        Easy to discover new code libraries
      • 6
        Smooth integration
      • 6
        Cloud SCM
      • 6
        Nice API
      • 6
        Graphs
      • 6
        Integrations
      • 6
        It's awesome
      • 5
        Quick Onboarding
      • 5
        Reliable
      • 5
        Remarkable uptime
      • 5
        CI Integration
      • 5
        Hands down best online Git service available
      • 4
        Uses GIT
      • 4
        Version Control
      • 4
        Simple but powerful
      • 4
        Unlimited Public Repos at no cost
      • 4
        Free HTML hosting
      • 4
        Security options
      • 4
        Loved by developers
      • 4
        Easy to use and collaborate with others
      • 3
        Ci
      • 3
        IAM
      • 3
        Nice to use
      • 3
        Easy deployment via SSH
      • 2
        Easy to use
      • 2
        Leads the copycats
      • 2
        All in one development service
      • 2
        Free private repos
      • 2
        Free HTML hostings
      • 2
        Easy and efficient maintainance of the projects
      • 2
        Beautiful
      • 2
        Easy source control and everything is backed up
      • 2
        IAM integration
      • 2
        Very Easy to Use
      • 2
        Good tools support
      • 2
        Issues tracker
      • 2
        Never dethroned
      • 2
        Self Hosted
      • 1
        Dasf
      • 1
        Profound
      CONS OF GITHUB
      • 54
        Owned by micrcosoft
      • 38
        Expensive for lone developers that want private repos
      • 15
        Relatively slow product/feature release cadence
      • 10
        API scoping could be better
      • 9
        Only 3 collaborators for private repos
      • 4
        Limited featureset for issue management
      • 3
        Does not have a graph for showing history like git lens
      • 2
        GitHub Packages does not support SNAPSHOT versions
      • 1
        No multilingual interface
      • 1
        Takes a long time to commit
      • 1
        Expensive

      related GitHub posts

      Johnny Bell

      I was building a personal project that I needed to store items in a real time database. I am more comfortable with my Frontend skills than my backend so I didn't want to spend time building out anything in Ruby or Go.

      I stumbled on Firebase by #Google, and it was really all I needed. It had realtime data, an area for storing file uploads and best of all for the amount of data I needed it was free!

      I built out my application using tools I was familiar with, React for the framework, Redux.js to manage my state across components, and styled-components for the styling.

      Now as this was a project I was just working on in my free time for fun I didn't really want to pay for hosting. I did some research and I found Netlify. I had actually seen them at #ReactRally the year before and deployed a Gatsby site to Netlify already.

      Netlify was very easy to setup and link to my GitHub account you select a repo and pretty much with very little configuration you have a live site that will deploy every time you push to master.

      With the selection of these tools I was able to build out my application, connect it to a realtime database, and deploy to a live environment all with $0 spent.

      If you're looking to build out a small app I suggest giving these tools a go as you can get your idea out into the real world for absolutely no cost.

      See more

      Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.

      Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!

      Check Out My Architecture: CLICK ME

      Check out the GitHub repo attached

      See more
      Python logo

      Python

      243.4K
      198.5K
      6.9K
      A clear and powerful object-oriented programming language, comparable to Perl, Ruby, Scheme, or Java.
      243.4K
      198.5K
      + 1
      6.9K
      PROS OF PYTHON
      • 1.2K
        Great libraries
      • 961
        Readable code
      • 847
        Beautiful code
      • 787
        Rapid development
      • 689
        Large community
      • 437
        Open source
      • 393
        Elegant
      • 282
        Great community
      • 272
        Object oriented
      • 220
        Dynamic typing
      • 77
        Great standard library
      • 60
        Very fast
      • 55
        Functional programming
      • 49
        Easy to learn
      • 45
        Scientific computing
      • 35
        Great documentation
      • 29
        Productivity
      • 28
        Matlab alternative
      • 28
        Easy to read
      • 24
        Simple is better than complex
      • 20
        It's the way I think
      • 19
        Imperative
      • 18
        Very programmer and non-programmer friendly
      • 18
        Free
      • 17
        Powerfull language
      • 17
        Machine learning support
      • 16
        Fast and simple
      • 14
        Scripting
      • 12
        Explicit is better than implicit
      • 11
        Ease of development
      • 10
        Clear and easy and powerfull
      • 9
        Unlimited power
      • 8
        It's lean and fun to code
      • 8
        Import antigravity
      • 7
        Python has great libraries for data processing
      • 7
        Print "life is short, use python"
      • 6
        There should be one-- and preferably only one --obvious
      • 6
        Now is better than never
      • 6
        I love snakes
      • 6
        Although practicality beats purity
      • 6
        Flat is better than nested
      • 6
        Great for tooling
      • 6
        Readability counts
      • 6
        Rapid Prototyping
      • 6
        Fast coding and good for competitions
      • 6
        High Documented language
      • 5
        Lists, tuples, dictionaries
      • 5
        Great for analytics
      • 4
        Complex is better than complicated
      • 4
        Easy to learn and use
      • 4
        Simple and easy to learn
      • 4
        Easy to setup and run smooth
      • 4
        Web scraping
      • 4
        CG industry needs
      • 4
        Socially engaged community
      • 4
        Plotting
      • 4
        Beautiful is better than ugly
      • 4
        Multiple Inheritence
      • 3
        No cruft
      • 3
        Flexible and easy
      • 3
        It is Very easy , simple and will you be love programmi
      • 3
        Many types of collections
      • 3
        If the implementation is easy to explain, it may be a g
      • 3
        If the implementation is hard to explain, it's a bad id
      • 3
        Special cases aren't special enough to break the rules
      • 3
        Pip install everything
      • 3
        List comprehensions
      • 3
        Generators
      • 3
        Import this
      • 2
        Batteries included
      • 2
        Securit
      • 2
        Can understand easily who are new to programming
      • 2
        Powerful language for AI
      • 2
        Should START with this but not STICK with This
      • 2
        A-to-Z
      • 2
        Because of Netflix
      • 2
        Only one way to do it
      • 2
        Better outcome
      • 2
        Good for hacking
      • 1
        Slow
      • 1
        Sexy af
      • 1
        Procedural programming
      • 1
        Automation friendly
      • 0
        Ni
      • 0
        Keep it simple
      • 0
        Powerful
      CONS OF PYTHON
      • 53
        Still divided between python 2 and python 3
      • 28
        Performance impact
      • 26
        Poor syntax for anonymous functions
      • 22
        GIL
      • 19
        Package management is a mess
      • 14
        Too imperative-oriented
      • 12
        Hard to understand
      • 12
        Dynamic typing
      • 12
        Very slow
      • 8
        Indentations matter a lot
      • 8
        Not everything is expression
      • 7
        Incredibly slow
      • 7
        Explicit self parameter in methods
      • 6
        Requires C functions for dynamic modules
      • 6
        Poor DSL capabilities
      • 6
        No anonymous functions
      • 5
        Fake object-oriented programming
      • 5
        Threading
      • 5
        The "lisp style" whitespaces
      • 5
        Official documentation is unclear.
      • 5
        Hard to obfuscate
      • 5
        Circular import
      • 4
        Lack of Syntax Sugar leads to "the pyramid of doom"
      • 4
        The benevolent-dictator-for-life quit
      • 4
        Not suitable for autocomplete
      • 2
        Meta classes
      • 1
        Training wheels (forced indentation)

      related Python posts

      Conor Myhrvold
      Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 11.8M views

      How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

      Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

      Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

      https://eng.uber.com/distributed-tracing/

      (GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

      Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

      See more
      Nick Parsons
      Building cool things on the internet 🛠️ at Stream · | 35 upvotes · 4.2M views

      Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.

      We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)

      We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.

      Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.

      #FrameworksFullStack #Languages

      See more