Alternatives to Docker Machine logo

Alternatives to Docker Machine

Docker Compose, boot2docker, Docker, Ansible, and Kubernetes are the most popular alternatives and competitors to Docker Machine.
434
518
+ 1
12

What is Docker Machine and what are its top alternatives?

Docker Machine is a tool that allows users to create and manage virtual machines that run Docker containers. It is designed to automate the process of setting up Docker host machines across different platforms and environments. Docker Machine simplifies the deployment of Docker containers by providing a command-line interface to manage the creation and configuration of virtual machines.

  1. Vagrant: Vagrant is an open-source tool that focuses on building and managing development environments. It provides a simple and flexible way to manage virtual machines and containers. Key features include multi-provider support, reproducible environments, and easy configuration management. Pros: Extensive plugin ecosystem, supports various virtualization platforms. Cons: Can be resource-intensive compared to Docker Machine.

  2. Kubernetes: Kubernetes is a container orchestration platform that automates the deployment, scaling, and management of containerized applications. It offers features such as automated scheduling, self-healing, and horizontal scaling. Pros: Supports both stateless and stateful applications, highly scalable and resilient. Cons: Steeper learning curve compared to Docker Machine.

  3. Minikube: Minikube is a tool that helps users run a single-node Kubernetes cluster on their local machine. It is designed for developers and testers to try out Kubernetes locally. Key features include easy setup, support for multiple Kubernetes versions, and integration with container runtimes like Docker. Pros: Lightweight and easy to use, ideal for testing Kubernetes deployments. Cons: Limited to running a single-node cluster.

  4. Rancher: Rancher is an open-source platform for running containers and managing Kubernetes clusters. It provides a user-friendly interface to deploy, manage, and monitor containerized applications. Key features include centralized management, native Kubernetes integration, and built-in monitoring tools. Pros: Simplifies Kubernetes management, supports multi-cluster deployments. Cons: Requires dedicated infrastructure for deployment.

  5. OpenShift: OpenShift is a container platform based on Kubernetes that enables developers to build, deploy, and manage applications in a secure and scalable environment. It offers features such as source-to-image builds, integrated CI/CD pipelines, and enterprise-grade security. Pros: Built-in developer tools, supports hybrid cloud environments. Cons: Requires specialized knowledge to set up and manage.

  6. Docker Swarm: Docker Swarm is a container orchestration tool that allows users to create and manage a cluster of Docker hosts. It provides features such as service scaling, rolling updates, and load balancing. Pros: Simple and easy to set up, integrates seamlessly with Docker. Cons: Limited scalability compared to other orchestration platforms.

  7. Nomad: Nomad is a cluster scheduler and orchestrator developed by HashiCorp. It enables users to deploy and manage applications across a cluster of machines. Key features include multi-region support, auto-scaling, and batch job scheduling. Pros: Supports multiple workloads, easy to integrate with existing tools. Cons: Lack of built-in service discovery.

  8. LXD: LXD is a container hypervisor that provides a system container manager for Linux systems. It offers features such as container snapshots, live migration, and clustering capabilities. Pros: High performance, secure by design. Cons: Limited to Linux environments, may require additional setup for managing containers.

  9. AWS ECS: AWS ECS (Elastic Container Service) is a fully managed container orchestration service provided by Amazon Web Services. It allows users to run containerized applications on AWS infrastructure without having to manage the underlying servers. Pros: Seamless integration with other AWS services, scalable and reliable. Cons: Vendor lock-in, limited support for on-premises deployments.

  10. GKE (Google Kubernetes Engine): GKE is a managed Kubernetes service offered by Google Cloud Platform. It simplifies the deployment and management of Kubernetes clusters in the cloud. Key features include automatic scaling, built-in monitoring, and integrated logging. Pros: Fully managed service, integrated with Google Cloud Platform. Cons: Costs can escalate with usage, limited control over underlying infrastructure.

Top Alternatives to Docker Machine

  • Docker Compose
    Docker Compose

    With Compose, you define a multi-container application in a single file, then spin your application up in a single command which does everything that needs to be done to get it running. ...

  • boot2docker
    boot2docker

    boot2docker is a lightweight Linux distribution based on Tiny Core Linux made specifically to run Docker containers. It runs completely from RAM, weighs ~27MB and boots in ~5s (YMMV). ...

  • Docker
    Docker

    The Docker Platform is the industry-leading container platform for continuous, high-velocity innovation, enabling organizations to seamlessly build and share any application — from legacy to what comes next — and securely run them anywhere ...

  • Ansible
    Ansible

    Ansible is an IT automation tool. It can configure systems, deploy software, and orchestrate more advanced IT tasks such as continuous deployments or zero downtime rolling updates. Ansible’s goals are foremost those of simplicity and maximum ease of use. ...

  • Kubernetes
    Kubernetes

    Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions. ...

  • Docker Swarm
    Docker Swarm

    Swarm serves the standard Docker API, so any tool which already communicates with a Docker daemon can use Swarm to transparently scale to multiple hosts: Dokku, Compose, Krane, Deis, DockerUI, Shipyard, Drone, Jenkins... and, of course, the Docker client itself. ...

  • Vagrant
    Vagrant

    Vagrant provides the framework and configuration format to create and manage complete portable development environments. These development environments can live on your computer or in the cloud, and are portable between Windows, Mac OS X, and Linux. ...

  • Git
    Git

    Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...

Docker Machine alternatives & related posts

Docker Compose logo

Docker Compose

21.6K
501
Define and run multi-container applications with Docker
21.6K
501
PROS OF DOCKER COMPOSE
  • 123
    Multi-container descriptor
  • 110
    Fast development environment setup
  • 79
    Easy linking of containers
  • 68
    Simple yaml configuration
  • 60
    Easy setup
  • 16
    Yml or yaml format
  • 12
    Use Standard Docker API
  • 8
    Open source
  • 5
    Go from template to application in minutes
  • 5
    Can choose Discovery Backend
  • 4
    Scalable
  • 4
    Easy configuration
  • 4
    Kubernetes integration
  • 3
    Quick and easy
CONS OF DOCKER COMPOSE
  • 9
    Tied to single machine
  • 5
    Still very volatile, changing syntax often

related Docker Compose posts

Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.6M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more

Recently I have been working on an open source stack to help people consolidate their personal health data in a single database so that AI and analytics apps can be run against it to find personalized treatments. We chose to go with a #containerized approach leveraging Docker #containers with a local development environment setup with Docker Compose and nginx for container routing. For the production environment we chose to pull code from GitHub and build/push images using Jenkins and using Kubernetes to deploy to Amazon EC2.

We also implemented a dashboard app to handle user authentication/authorization, as well as a custom SSO server that runs on Heroku which allows experts to easily visit more than one instance without having to login repeatedly. The #Backend was implemented using my favorite #Stack which consists of FeathersJS on top of Node.js and ExpressJS with PostgreSQL as the main database. The #Frontend was implemented using React, Redux.js, Semantic UI React and the FeathersJS client. Though testing was light on this project, we chose to use AVA as well as ESLint to keep the codebase clean and consistent.

See more
boot2docker logo

boot2docker

275
95
Lightweight Linux for Docker
275
95
PROS OF BOOT2DOCKER
  • 43
    Lightweight
  • 35
    Use docker when it's not natively possible
  • 11
    Use it for fast demo without big image
  • 3
    Easy to use
  • 3
    Containers
CONS OF BOOT2DOCKER
    Be the first to leave a con

    related boot2docker posts

    Docker logo

    Docker

    174.5K
    3.9K
    Enterprise Container Platform for High-Velocity Innovation.
    174.5K
    3.9K
    PROS OF DOCKER
    • 823
      Rapid integration and build up
    • 692
      Isolation
    • 521
      Open source
    • 505
      Testa­bil­i­ty and re­pro­ducibil­i­ty
    • 460
      Lightweight
    • 218
      Standardization
    • 185
      Scalable
    • 106
      Upgrading / down­grad­ing / ap­pli­ca­tion versions
    • 88
      Security
    • 85
      Private paas environments
    • 34
      Portability
    • 26
      Limit resource usage
    • 17
      Game changer
    • 16
      I love the way docker has changed virtualization
    • 14
      Fast
    • 12
      Concurrency
    • 8
      Docker's Compose tools
    • 6
      Fast and Portable
    • 6
      Easy setup
    • 5
      Because its fun
    • 4
      Makes shipping to production very simple
    • 3
      It's dope
    • 3
      Highly useful
    • 2
      Does a nice job hogging memory
    • 2
      Open source and highly configurable
    • 2
      Simplicity, isolation, resource effective
    • 2
      MacOS support FAKE
    • 2
      Its cool
    • 2
      Docker hub for the FTW
    • 2
      HIgh Throughput
    • 2
      Very easy to setup integrate and build
    • 2
      Package the environment with the application
    • 2
      Super
    • 0
      Asdfd
    CONS OF DOCKER
    • 8
      New versions == broken features
    • 6
      Unreliable networking
    • 6
      Documentation not always in sync
    • 4
      Moves quickly
    • 3
      Not Secure

    related Docker posts

    Simon Reymann
    Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.6M views

    Our whole DevOps stack consists of the following tools:

    • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
    • Respectively Git as revision control system
    • SourceTree as Git GUI
    • Visual Studio Code as IDE
    • CircleCI for continuous integration (automatize development process)
    • Prettier / TSLint / ESLint as code linter
    • SonarQube as quality gate
    • Docker as container management (incl. Docker Compose for multi-container application management)
    • VirtualBox for operating system simulation tests
    • Kubernetes as cluster management for docker containers
    • Heroku for deploying in test environments
    • nginx as web server (preferably used as facade server in production environment)
    • SSLMate (using OpenSSL) for certificate management
    • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
    • PostgreSQL as preferred database system
    • Redis as preferred in-memory database/store (great for caching)

    The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

    • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
    • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
    • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
    • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
    • Scalability: All-in-one framework for distributed systems.
    • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
    See more
    Tymoteusz Paul
    Devops guy at X20X Development LTD · | 23 upvotes · 10M views

    Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

    It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

    I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

    We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

    If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

    The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

    Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

    See more
    Ansible logo

    Ansible

    19.1K
    1.3K
    Radically simple configuration-management, application deployment, task-execution, and multi-node orchestration engine
    19.1K
    1.3K
    PROS OF ANSIBLE
    • 284
      Agentless
    • 210
      Great configuration
    • 199
      Simple
    • 176
      Powerful
    • 155
      Easy to learn
    • 69
      Flexible
    • 55
      Doesn't get in the way of getting s--- done
    • 35
      Makes sense
    • 30
      Super efficient and flexible
    • 27
      Powerful
    • 11
      Dynamic Inventory
    • 9
      Backed by Red Hat
    • 7
      Works with AWS
    • 6
      Cloud Oriented
    • 6
      Easy to maintain
    • 4
      Vagrant provisioner
    • 4
      Simple and powerful
    • 4
      Multi language
    • 4
      Simple
    • 4
      Because SSH
    • 4
      Procedural or declarative, or both
    • 4
      Easy
    • 3
      Consistency
    • 2
      Well-documented
    • 2
      Masterless
    • 2
      Debugging is simple
    • 2
      Merge hash to get final configuration similar to hiera
    • 2
      Fast as hell
    • 1
      Manage any OS
    • 1
      Work on windows, but difficult to manage
    • 1
      Certified Content
    CONS OF ANSIBLE
    • 8
      Dangerous
    • 5
      Hard to install
    • 3
      Doesn't Run on Windows
    • 3
      Bloated
    • 3
      Backward compatibility
    • 2
      No immutable infrastructure

    related Ansible posts

    Tymoteusz Paul
    Devops guy at X20X Development LTD · | 23 upvotes · 10M views

    Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

    It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

    I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

    We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

    If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

    The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

    Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

    See more
    Sebastian Gębski

    Heroku was a decent choice to start a business, but at some point our platform was too big, too complex & too heterogenic, so Heroku started to be a constraint, not a benefit. First, we've started containerizing our apps with Docker to eliminate "works in my machine" syndrome & uniformize the environment setup. The first orchestration was composed with Docker Compose , but at some point it made sense to move it to Kubernetes. Fortunately, we've made a very good technical decision when starting our work with containers - all the container configuration & provisions HAD (since the beginning) to be done in code (Infrastructure as Code) - we've used Terraform & Ansible for that (correspondingly). This general trend of containerisation was accompanied by another, parallel & equally big project: migrating environments from Heroku to AWS: using Amazon EC2 , Amazon EKS, Amazon S3 & Amazon RDS.

    See more
    Kubernetes logo

    Kubernetes

    59.9K
    681
    Manage a cluster of Linux containers as a single system to accelerate Dev and simplify Ops
    59.9K
    681
    PROS OF KUBERNETES
    • 166
      Leading docker container management solution
    • 129
      Simple and powerful
    • 107
      Open source
    • 76
      Backed by google
    • 58
      The right abstractions
    • 25
      Scale services
    • 20
      Replication controller
    • 11
      Permission managment
    • 9
      Supports autoscaling
    • 8
      Simple
    • 8
      Cheap
    • 6
      Self-healing
    • 5
      Open, powerful, stable
    • 5
      Reliable
    • 5
      No cloud platform lock-in
    • 5
      Promotes modern/good infrascture practice
    • 4
      Scalable
    • 4
      Quick cloud setup
    • 3
      Custom and extensibility
    • 3
      Captain of Container Ship
    • 3
      Cloud Agnostic
    • 3
      Backed by Red Hat
    • 3
      Runs on azure
    • 3
      A self healing environment with rich metadata
    • 2
      Everything of CaaS
    • 2
      Gke
    • 2
      Golang
    • 2
      Easy setup
    • 2
      Expandable
    • 2
      Sfg
    CONS OF KUBERNETES
    • 16
      Steep learning curve
    • 15
      Poor workflow for development
    • 8
      Orchestrates only infrastructure
    • 4
      High resource requirements for on-prem clusters
    • 2
      Too heavy for simple systems
    • 1
      Additional vendor lock-in (Docker)
    • 1
      More moving parts to secure
    • 1
      Additional Technology Overhead

    related Kubernetes posts

    Conor Myhrvold
    Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 12.7M views

    How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

    Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

    Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

    https://eng.uber.com/distributed-tracing/

    (GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

    Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

    See more
    Yshay Yaacobi

    Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

    Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

    After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

    See more
    Docker Swarm logo

    Docker Swarm

    793
    282
    Native clustering for Docker. Turn a pool of Docker hosts into a single, virtual host.
    793
    282
    PROS OF DOCKER SWARM
    • 55
      Docker friendly
    • 46
      Easy to setup
    • 40
      Standard Docker API
    • 38
      Easy to use
    • 23
      Native
    • 22
      Free
    • 13
      Clustering made easy
    • 12
      Simple usage
    • 11
      Integral part of docker
    • 6
      Cross Platform
    • 5
      Labels and annotations
    • 5
      Performance
    • 3
      Easy Networking
    • 3
      Shallow learning curve
    CONS OF DOCKER SWARM
    • 9
      Low adoption

    related Docker Swarm posts

    Yshay Yaacobi

    Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

    Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

    After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

    See more
    Simon Reymann
    Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.6M views

    Our whole DevOps stack consists of the following tools:

    • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
    • Respectively Git as revision control system
    • SourceTree as Git GUI
    • Visual Studio Code as IDE
    • CircleCI for continuous integration (automatize development process)
    • Prettier / TSLint / ESLint as code linter
    • SonarQube as quality gate
    • Docker as container management (incl. Docker Compose for multi-container application management)
    • VirtualBox for operating system simulation tests
    • Kubernetes as cluster management for docker containers
    • Heroku for deploying in test environments
    • nginx as web server (preferably used as facade server in production environment)
    • SSLMate (using OpenSSL) for certificate management
    • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
    • PostgreSQL as preferred database system
    • Redis as preferred in-memory database/store (great for caching)

    The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

    • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
    • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
    • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
    • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
    • Scalability: All-in-one framework for distributed systems.
    • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
    See more
    Vagrant logo

    Vagrant

    11.5K
    1.5K
    A tool for building and distributing development environments
    11.5K
    1.5K
    PROS OF VAGRANT
    • 352
      Development environments
    • 290
      Simple bootstraping
    • 237
      Free
    • 139
      Boxes
    • 130
      Provisioning
    • 84
      Portable
    • 81
      Synced folders
    • 69
      Reproducible
    • 51
      Ssh
    • 44
      Very flexible
    • 5
      Works well, can be replicated easily with other devs
    • 5
      Easy-to-share, easy-to-version dev configuration
    • 3
      Great
    • 3
      Just works
    • 2
      Quick way to get running
    • 1
      DRY - "Do Not Repeat Yourself"
    • 1
      Container Friendly
    • 1
      What is vagrant?
    • 1
      Good documentation
    CONS OF VAGRANT
    • 2
      Can become v complex w prod. provisioner (Salt, etc.)
    • 2
      Multiple VMs quickly eat up disk space
    • 1
      Development environment that kills your battery

    related Vagrant posts

    Tymoteusz Paul
    Devops guy at X20X Development LTD · | 23 upvotes · 10M views

    Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

    It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

    I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

    We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

    If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

    The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

    Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

    See more
    Tim Abbott
    Shared insights
    on
    VirtualBoxVirtualBoxVagrantVagrantZulipZulip
    at

    We use VirtualBox primarily as a Vagrant provider for macOS for the Zulip development environment. It's totally reasonable software for providing a convenient virtual machine setup on macOS (and for debugging when things go wrong, which is mostly how we use it since the Vagrant provider for macOS just works).

    See more
    Git logo

    Git

    297.6K
    6.6K
    Fast, scalable, distributed revision control system
    297.6K
    6.6K
    PROS OF GIT
    • 1.4K
      Distributed version control system
    • 1.1K
      Efficient branching and merging
    • 959
      Fast
    • 845
      Open source
    • 726
      Better than svn
    • 368
      Great command-line application
    • 306
      Simple
    • 291
      Free
    • 232
      Easy to use
    • 222
      Does not require server
    • 27
      Distributed
    • 22
      Small & Fast
    • 18
      Feature based workflow
    • 15
      Staging Area
    • 13
      Most wide-spread VSC
    • 11
      Role-based codelines
    • 11
      Disposable Experimentation
    • 7
      Frictionless Context Switching
    • 6
      Data Assurance
    • 5
      Efficient
    • 4
      Just awesome
    • 3
      Github integration
    • 3
      Easy branching and merging
    • 2
      Compatible
    • 2
      Flexible
    • 2
      Possible to lose history and commits
    • 1
      Rebase supported natively; reflog; access to plumbing
    • 1
      Light
    • 1
      Team Integration
    • 1
      Fast, scalable, distributed revision control system
    • 1
      Easy
    • 1
      Flexible, easy, Safe, and fast
    • 1
      CLI is great, but the GUI tools are awesome
    • 1
      It's what you do
    • 0
      Phinx
    CONS OF GIT
    • 16
      Hard to learn
    • 11
      Inconsistent command line interface
    • 9
      Easy to lose uncommitted work
    • 8
      Worst documentation ever possibly made
    • 5
      Awful merge handling
    • 3
      Unexistent preventive security flows
    • 3
      Rebase hell
    • 2
      Ironically even die-hard supporters screw up badly
    • 2
      When --force is disabled, cannot rebase
    • 1
      Doesn't scale for big data

    related Git posts

    Simon Reymann
    Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.6M views

    Our whole DevOps stack consists of the following tools:

    • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
    • Respectively Git as revision control system
    • SourceTree as Git GUI
    • Visual Studio Code as IDE
    • CircleCI for continuous integration (automatize development process)
    • Prettier / TSLint / ESLint as code linter
    • SonarQube as quality gate
    • Docker as container management (incl. Docker Compose for multi-container application management)
    • VirtualBox for operating system simulation tests
    • Kubernetes as cluster management for docker containers
    • Heroku for deploying in test environments
    • nginx as web server (preferably used as facade server in production environment)
    • SSLMate (using OpenSSL) for certificate management
    • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
    • PostgreSQL as preferred database system
    • Redis as preferred in-memory database/store (great for caching)

    The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

    • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
    • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
    • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
    • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
    • Scalability: All-in-one framework for distributed systems.
    • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
    See more
    Tymoteusz Paul
    Devops guy at X20X Development LTD · | 23 upvotes · 10M views

    Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

    It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

    I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

    We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

    If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

    The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

    Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

    See more