What is AWS Step Functions and what are its top alternatives?
Top Alternatives to AWS Step Functions
- AWS Lambda
AWS Lambda is a compute service that runs your code in response to events and automatically manages the underlying compute resources for you. You can use AWS Lambda to extend other AWS services with custom logic, or create your own back-end services that operate at AWS scale, performance, and security. ...
- Airflow
Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed. ...
- AWS Batch
It enables developers, scientists, and engineers to easily and efficiently run hundreds of thousands of batch computing jobs on AWS. It dynamically provisions the optimal quantity and type of compute resources (e.g., CPU or memory optimized instances) based on the volume and specific resource requirements of the batch jobs submitted. ...
- AWS Data Pipeline
AWS Data Pipeline is a web service that provides a simple management system for data-driven workflows. Using AWS Data Pipeline, you define a pipeline composed of the “data sources” that contain your data, the “activities” or business logic such as EMR jobs or SQL queries, and the “schedule” on which your business logic executes. For example, you could define a job that, every hour, runs an Amazon Elastic MapReduce (Amazon EMR)–based analysis on that hour’s Amazon Simple Storage Service (Amazon S3) log data, loads the results into a relational database for future lookup, and then automatically sends you a daily summary email. ...
- Batch
Yes, we’re really free. So, how do we keep the lights on? Instead of charging you a monthly fee, we sell ads on your behalf to the top 500 mobile advertisers in the world. With Batch, you earn money each month while accessing great engagement tools for free. ...
- Camunda
With Camunda, business users collaborate with developers to model and automate end-to-end processes using BPMN-powered flowcharts that run with the speed, scale, and resiliency required to compete in today’s digital-first world ...
- Google Keep
It is a note-taking service developed by Google. It is available on the web, and has mobile apps for the Android and iOS mobile operating systems. Keep offers a variety of tools for taking notes, including text, lists, images, and audio. ...
- Amazon SWF
Amazon Simple Workflow allows you to structure the various processing steps in an application that runs across one or more machines as a set of “tasks.” Amazon SWF manages dependencies between the tasks, schedules the tasks for execution, and runs any logic that needs to be executed in parallel. The service also stores the tasks, reliably dispatches them to application components, tracks their progress, and keeps their latest state. ...
AWS Step Functions alternatives & related posts
AWS Lambda
- No infrastructure129
- Cheap83
- Quick70
- Stateless59
- No deploy, no server, great sleep47
- AWS Lambda went down taking many sites with it12
- Event Driven Governance6
- Extensive API6
- Auto scale and cost effective6
- Easy to deploy6
- VPC Support5
- Integrated with various AWS services3
- Cant execute ruby or go7
- Compute time limited3
- Can't execute PHP w/o significant effort1
related AWS Lambda posts
Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.
We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient
Based on the above criteria, we selected the following tools to perform the end to end data replication:
We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.
We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.
In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.
Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.
In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!
Heroku Docker GitHub Node.js hapi Vue.js AWS Lambda Amazon S3 PostgreSQL Knex.js Checkly is a fairly young company and we're still working hard to find the correct mix of product features, price and audience.
We are focussed on tech B2B, but I always wanted to serve solo developers too. So I decided to make a $7 plan.
Why $7? Simply put, it seems to be a sweet spot for tech companies: Heroku, Docker, Github, Appoptics (Librato) all offer $7 plans. They must have done a ton of research into this, so why not piggy back that and try it out.
Enough biz talk, onto tech. The challenges were:
- Slice of a portion of the functionality so a $7 plan is still profitable. We call this the "plan limits"
- Update API and back end services to handle and enforce plan limits.
- Update the UI to kindly state plan limits are in effect on some part of the UI.
- Update the pricing page to reflect all changes.
- Keep the actual processing backend, storage and API's as untouched as possible.
In essence, we went from strictly volume based pricing to value based pricing. Here come the technical steps & decisions we made to get there.
- We updated our PostgreSQL schema so plans now have an array of "features". These are string constants that represent feature toggles.
- The Vue.js frontend reads these from the vuex store on login.
- Based on these values, the UI has simple
v-if
statements to either just show the feature or show a friendly "please upgrade" button. - The hapi API has a hook on each relevant API endpoint that checks whether a user's plan has the feature enabled, or not.
Side note: We offer 10 SMS messages per month on the developer plan. However, we were not actually counting how many people were sending. We had to update our alerting daemon (that runs on Heroku and triggers SMS messages via AWS SNS) to actually bump a counter.
What we build is basically feature-toggling based on plan features. It is very extensible for future additions. Our scheduling and storage backend that actually runs users' monitoring requests (AWS Lambda) and stores the results (S3 and Postgres) has no knowledge of all of this and remained unchanged.
Hope this helps anyone building out their SaaS and is in a similar situation.
Airflow
- Features50
- Task Dependency Management14
- Beautiful UI12
- Cluster of workers12
- Extensibility10
- Open source6
- Complex workflows5
- Python5
- Good api3
- Apache project3
- Custom operators3
- Dashboard2
- Observability is not great when the DAGs exceed 2502
- Running it on kubernetes cluster relatively complex2
- Open source - provides minimum or no support2
- Logical separation of DAGs is not straight forward1
related Airflow posts
I am looking for an open-source scheduler tool with cross-functional application dependencies. Some of the tasks I am looking to schedule are as follows:
- Trigger Matillion ETL loads
- Trigger Attunity Replication tasks that have downstream ETL loads
- Trigger Golden gate Replication Tasks
- Shell scripts, wrappers, file watchers
- Event-driven schedules
I have used Airflow in the past, and I know we need to create DAGs for each pipeline. I am not familiar with Jenkins, but I know it works with configuration without much underlying code. I want to evaluate both and appreciate any advise
I am working on a project that grabs a set of input data from AWS S3, pre-processes and divvies it up, spins up 10K batch containers to process the divvied data in parallel on AWS Batch, post-aggregates the data, and pushes it to S3.
I already have software patterns from other projects for Airflow + Batch but have not dealt with the scaling factors of 10k parallel tasks. Airflow is nice since I can look at which tasks failed and retry a task after debugging. But dealing with that many tasks on one Airflow EC2 instance seems like a barrier. Another option would be to have one task that kicks off the 10k containers and monitors it from there.
I have no experience with AWS Step Functions but have heard it's AWS's Airflow. There looks to be plenty of patterns online for Step Functions + Batch. Do Step Functions seem like a good path to check out for my use case? Do you get the same insights on failing jobs / ability to retry tasks as you do with Airflow?
- Containerized3
- Scalable3
- More overhead than lambda2
- Image management1
related AWS Batch posts
AWS Data Pipeline
- Easy to create DAG and execute it1
related AWS Data Pipeline posts
Batch
- Revenuecat2