What is Anaconda and what are its top alternatives?
Top Alternatives to Anaconda
- Python
Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...
- PyCharm
PyCharm’s smart code editor provides first-class support for Python, JavaScript, CoffeeScript, TypeScript, CSS, popular template languages and more. Take advantage of language-aware code completion, error detection, and on-the-fly code fixes! ...
- pip
It is the package installer for Python. You can use pip to install packages from the Python Package Index and other indexes. ...
- Jupyter
The Jupyter Notebook is a web-based interactive computing platform. The notebook combines live code, equations, narrative text, visualizations, interactive dashboards and other media. ...
- NumPy
Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases. ...
- Pandas
Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more. ...
- SciPy
Python-based ecosystem of open-source software for mathematics, science, and engineering. It contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering. ...
- Dataform
Dataform helps you manage all data processes in your cloud data warehouse. Publish tables, write data tests and automate complex SQL workflows in a few minutes, so you can spend more time on analytics and less time managing infrastructure. ...
Anaconda alternatives & related posts
Python
- Great libraries1.2K
- Readable code956
- Beautiful code840
- Rapid development783
- Large community687
- Open source431
- Elegant389
- Great community280
- Object oriented272
- Dynamic typing216
- Great standard library77
- Very fast58
- Functional programming53
- Easy to learn46
- Scientific computing45
- Great documentation35
- Matlab alternative28
- Productivity27
- Easy to read27
- Simple is better than complex23
- It's the way I think20
- Imperative19
- Free18
- Very programmer and non-programmer friendly17
- Powerfull language16
- Machine learning support16
- Fast and simple15
- Scripting14
- Explicit is better than implicit12
- Ease of development10
- Unlimited power9
- Clear and easy and powerfull9
- Import antigravity8
- Print "life is short, use python"7
- It's lean and fun to code7
- Now is better than never6
- Fast coding and good for competitions6
- There should be one-- and preferably only one --obvious6
- High Documented language6
- I love snakes6
- Although practicality beats purity6
- Python has great libraries for data processing6
- Flat is better than nested6
- Great for tooling6
- Rapid Prototyping5
- Readability counts5
- Lists, tuples, dictionaries4
- Web scraping4
- CG industry needs4
- Great for analytics4
- Socially engaged community4
- Complex is better than complicated4
- Multiple Inheritence4
- Beautiful is better than ugly4
- Plotting4
- Simple and easy to learn3
- Import this3
- Many types of collections3
- If the implementation is easy to explain, it may be a g3
- Easy to setup and run smooth3
- Special cases aren't special enough to break the rules3
- Pip install everything3
- List comprehensions3
- No cruft3
- Easy to learn and use3
- Generators3
- If the implementation is hard to explain, it's a bad id3
- Should START with this but not STICK with This2
- A-to-Z2
- Because of Netflix2
- Only one way to do it2
- Better outcome2
- Good for hacking2
- Flexible and easy2
- It is Very easy , simple and will you be love programmi2
- Batteries included2
- Can understand easily who are new to programming2
- Powerful language for AI2
- Securit1
- Powerful0
- Still divided between python 2 and python 352
- Performance impact28
- Poor syntax for anonymous functions26
- GIL22
- Package management is a mess19
- Too imperative-oriented14
- Hard to understand12
- Dynamic typing12
- Very slow12
- Not everything is expression8
- Incredibly slow7
- Explicit self parameter in methods7
- Indentations matter a lot7
- Requires C functions for dynamic modules6
- No anonymous functions6
- Poor DSL capabilities6
- Fake object-oriented programming5
- Threading5
- The "lisp style" whitespaces5
- Official documentation is unclear.5
- Hard to obfuscate5
- Lack of Syntax Sugar leads to "the pyramid of doom"4
- Circular import4
- The benevolent-dictator-for-life quit4
- Not suitable for autocomplete4
- Meta classes2
- Training wheels (forced indentation)1
related Python posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.
We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)
We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.
Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.
#FrameworksFullStack #Languages
- Smart auto-completion110
- Intelligent code analysis92
- Powerful refactoring77
- Virtualenv integration60
- Git integration53
- Support for Django21
- Multi-database integration11
- VIM integration7
- Vagrant integration4
- In-tool Bash and Python shell3
- Plugin architecture2
- Docker2
- Django Implemented1
- Debug mode support docker1
- Emacs keybinds1
- Perforce integration1
- Slow startup10
- Not very flexible7
- Resource hog6
- Periodic slow menu response3
- Pricey for full features1
related PyCharm posts
UPDATE: Thanks for the great response. I am going to start with VSCode based on the open source and free version that will allow me to grow into other languages, but not cost me a license ..yet.
I have been working with software development for 12 years, but I am just beginning my journey to learn to code. I am starting with Python following the suggestion of some of my coworkers. They are split between Eclipse and IntelliJ IDEA for IDEs that they use and PyCharm is new to me. Which IDE would you suggest for a beginner that will allow expansion to Java, JavaScript, and eventually AngularJS and possibly mobile applications?
I am a QA heading to a new company where they all generally use Visual Studio Code, my experience is with IntelliJ IDEA and PyCharm. The language they use is JavaScript and so I will be writing my test framework in javaScript so the devs can more easily write tests without context switching.
My 2 questions: Does VS Code have Cucumber Plugins allowing me to write behave tests? And more importantly, does VS Code have the same refactoring tools that IntelliJ IDEA has? I love that I have easy access to a range of tools that allow me to refactor and simplify my code, making code writing really easy.
- Best package management system for python2
related pip posts
- In-line code execution using blocks19
- In-line graphing support11
- Can be themed8
- Multiple kernel support7
- LaTex Support3
- Best web-browser IDE for Python3
- Export to python code3
- HTML export capability2
- Multi-user with Kubernetes1
related Jupyter posts
From my point of view, both OpenRefine and Apache Hive serve completely different purposes. OpenRefine is intended for interactive cleaning of messy data locally. You could work with their libraries to use some of OpenRefine features as part of your data pipeline (there are pointers in FAQ), but OpenRefine in general is intended for a single-user local operation.
I can't recommend a particular alternative without better understanding of your use case. But if you are looking for an interactive tool to work with big data at scale, take a look at notebook environments like Jupyter, Databricks, or Deepnote. If you are building a data processing pipeline, consider also Apache Spark.
Edit: Fixed references from Hadoop to Hive, which is actually closer to Spark.
Jupyter Anaconda Pandas IPython
A great way to prototype your data analytic modules. The use of the package is simple and user-friendly and the migration from ipython to python is fairly simple: a lot of cleaning, but no more.
The negative aspect comes when you want to streamline your productive system or does CI with your anaconda environment: - most tools don't accept conda environments (as smoothly as pip requirements) - the conda environments (even with miniconda) have quite an overhead
- Great for data analysis10
- Faster than list4
related NumPy posts
Server side
We decided to use Python for our backend because it is one of the industry standard languages for data analysis and machine learning. It also has a lot of support due to its large user base.
Web Server: We chose Flask because we want to keep our machine learning / data analysis and the web server in the same language. Flask is easy to use and we all have experience with it. Postman will be used for creating and testing APIs due to its convenience.
Machine Learning: We decided to go with PyTorch for machine learning since it is one of the most popular libraries. It is also known to have an easier learning curve than other popular libraries such as Tensorflow. This is important because our team lacks ML experience and learning the tool as fast as possible would increase productivity.
Data Analysis: Some common Python libraries will be used to analyze our data. These include NumPy, Pandas , and matplotlib. These tools combined will help us learn the properties and characteristics of our data. Jupyter notebook will be used to help organize the data analysis process, and improve the code readability.
Client side
UI: We decided to use React for the UI because it helps organize the data and variables of the application into components, making it very convenient to maintain our dashboard. Since React is one of the most popular front end frameworks right now, there will be a lot of support for it as well as a lot of potential new hires that are familiar with the framework. CSS 3 and HTML5 will be used for the basic styling and structure of the web app, as they are the most widely used front end languages.
State Management: We decided to use Redux to manage the state of the application since it works naturally to React. Our team also already has experience working with Redux which gave it a slight edge over the other state management libraries.
Data Visualization: We decided to use the React-based library Victory to visualize the data. They have very user friendly documentation on their official website which we find easy to learn from.
Cache
- Caching: We decided between Redis and memcached because they are two of the most popular open-source cache engines. We ultimately decided to use Redis to improve our web app performance mainly due to the extra functionalities it provides such as fine-tuning cache contents and durability.
Database
- Database: We decided to use a NoSQL database over a relational database because of its flexibility from not having a predefined schema. The user behavior analytics has to be flexible since the data we plan to store may change frequently. We decided on MongoDB because it is lightweight and we can easily host the database with MongoDB Atlas . Everyone on our team also has experience working with MongoDB.
Infrastructure
- Deployment: We decided to use Heroku over AWS, Azure, Google Cloud because it is free. Although there are advantages to the other cloud services, Heroku makes the most sense to our team because our primary goal is to build an MVP.
Other Tools
Communication Slack will be used as the primary source of communication. It provides all the features needed for basic discussions. In terms of more interactive meetings, Zoom will be used for its video calls and screen sharing capabilities.
Source Control The project will be stored on GitHub and all code changes will be done though pull requests. This will help us keep the codebase clean and make it easy to revert changes when we need to.
Should I continue learning Django or take this Spring opportunity? I have been coding in python for about 2 years. I am currently learning Django and I am enjoying it. I also have some knowledge of data science libraries (Pandas, NumPy, scikit-learn, PyTorch). I am currently enhancing my web development and software engineering skills and may shift later into data science since I came from a medical background. The issue is that I am offered now a very trustworthy 9 months program teaching Java/Spring. The graduates of this program work directly in well know tech companies. Although I have been planning to continue with my Python, the other opportunity makes me hesitant since it will put me to work in a specific roadmap with deadlines and mentors. I also found on glassdoor that Spring jobs are way more than Django. Should I apply for this program or continue my journey?
Pandas
- Easy data frame management21
- Extensive file format compatibility1
related Pandas posts
Server side
We decided to use Python for our backend because it is one of the industry standard languages for data analysis and machine learning. It also has a lot of support due to its large user base.
Web Server: We chose Flask because we want to keep our machine learning / data analysis and the web server in the same language. Flask is easy to use and we all have experience with it. Postman will be used for creating and testing APIs due to its convenience.
Machine Learning: We decided to go with PyTorch for machine learning since it is one of the most popular libraries. It is also known to have an easier learning curve than other popular libraries such as Tensorflow. This is important because our team lacks ML experience and learning the tool as fast as possible would increase productivity.
Data Analysis: Some common Python libraries will be used to analyze our data. These include NumPy, Pandas , and matplotlib. These tools combined will help us learn the properties and characteristics of our data. Jupyter notebook will be used to help organize the data analysis process, and improve the code readability.
Client side
UI: We decided to use React for the UI because it helps organize the data and variables of the application into components, making it very convenient to maintain our dashboard. Since React is one of the most popular front end frameworks right now, there will be a lot of support for it as well as a lot of potential new hires that are familiar with the framework. CSS 3 and HTML5 will be used for the basic styling and structure of the web app, as they are the most widely used front end languages.
State Management: We decided to use Redux to manage the state of the application since it works naturally to React. Our team also already has experience working with Redux which gave it a slight edge over the other state management libraries.
Data Visualization: We decided to use the React-based library Victory to visualize the data. They have very user friendly documentation on their official website which we find easy to learn from.
Cache
- Caching: We decided between Redis and memcached because they are two of the most popular open-source cache engines. We ultimately decided to use Redis to improve our web app performance mainly due to the extra functionalities it provides such as fine-tuning cache contents and durability.
Database
- Database: We decided to use a NoSQL database over a relational database because of its flexibility from not having a predefined schema. The user behavior analytics has to be flexible since the data we plan to store may change frequently. We decided on MongoDB because it is lightweight and we can easily host the database with MongoDB Atlas . Everyone on our team also has experience working with MongoDB.
Infrastructure
- Deployment: We decided to use Heroku over AWS, Azure, Google Cloud because it is free. Although there are advantages to the other cloud services, Heroku makes the most sense to our team because our primary goal is to build an MVP.
Other Tools
Communication Slack will be used as the primary source of communication. It provides all the features needed for basic discussions. In terms of more interactive meetings, Zoom will be used for its video calls and screen sharing capabilities.
Source Control The project will be stored on GitHub and all code changes will be done though pull requests. This will help us keep the codebase clean and make it easy to revert changes when we need to.
Should I continue learning Django or take this Spring opportunity? I have been coding in python for about 2 years. I am currently learning Django and I am enjoying it. I also have some knowledge of data science libraries (Pandas, NumPy, scikit-learn, PyTorch). I am currently enhancing my web development and software engineering skills and may shift later into data science since I came from a medical background. The issue is that I am offered now a very trustworthy 9 months program teaching Java/Spring. The graduates of this program work directly in well know tech companies. Although I have been planning to continue with my Python, the other opportunity makes me hesitant since it will put me to work in a specific roadmap with deadlines and mentors. I also found on glassdoor that Spring jobs are way more than Django. Should I apply for this program or continue my journey?