Alternatives to Amazon Neptune logo

Alternatives to Amazon Neptune

Neo4j, GraphQL, OrientDB, JanusGraph, and Dgraph are the most popular alternatives and competitors to Amazon Neptune.
60
173
+ 1
15

What is Amazon Neptune and what are its top alternatives?

Amazon Neptune is a fully managed graph database service that enables customers to build and run applications that work with highly connected datasets. It supports popular graph models Property Graph and W3C's RDF, and provides features like ACID transactions, TinkerPop Gremlin, SPARQL, and more. However, customers have reported limitations such as the high cost associated with large datasets and the complexity of managing the service.

  1. Neo4j: Neo4j is a popular graph database management system that offers high performance, ACID transactions, and a flexible data model with powerful querying capabilities using the Cypher query language. Pros include strong community support, ease of use, and scalability. Cons may include high cost for enterprise features.

  2. OrientDB: OrientDB is a multi-model database management system that combines the power of graphs with document, key/value, object-oriented, and reactive models. Key features include distributed architecture, SQL support, indexing, and multi-master replication. Pros include flexibility in data models, while cons may include a learning curve for newcomers.

  3. ArangoDB: ArangoDB is a multi-model database management system that supports graphs, documents, and key/value models. It offers powerful graph traversal, ACID transactions, and a flexible query language (AQL). Pros include multi-model support and performance, while cons may include a less mature ecosystem compared to other options.

  4. TigerGraph: TigerGraph is a distributed graph database platform that delivers real-time deep link analytics. It offers parallel loading, querying, and computation for fast data processing. Pros include speed and scalability, while cons may include limited community support.

  5. JanusGraph: JanusGraph is an open-source, distributed graph database that supports various storage backend options such as Apache Cassandra, HBase, Google Cloud Bigtable, and more. It offers features like ACID transactions, global secondary indexing, and geo-spatial search. Pros include scalability and flexibility, while cons may include complexity in setup and configuration.

Top Alternatives to Amazon Neptune

  • Neo4j
    Neo4j

    Neo4j stores data in nodes connected by directed, typed relationships with properties on both, also known as a Property Graph. It is a high performance graph store with all the features expected of a mature and robust database, like a friendly query language and ACID transactions. ...

  • GraphQL
    GraphQL

    GraphQL is a data query language and runtime designed and used at Facebook to request and deliver data to mobile and web apps since 2012. ...

  • OrientDB
    OrientDB

    It is an open source NoSQL database management system written in Java. It is a Multi-model database, supporting graph, document, key/value, and object models, but the relationships are managed as in graph databases with direct connections between records. ...

  • JanusGraph
    JanusGraph

    It is a scalable graph database optimized for storing and querying graphs containing hundreds of billions of vertices and edges distributed across a multi-machine cluster. It is a transactional database that can support thousands of concurrent users executing complex graph traversals in real time. ...

  • Dgraph
    Dgraph

    Dgraph's goal is to provide Google production level scale and throughput, with low enough latency to be serving real time user queries, over terabytes of structured data. Dgraph supports GraphQL-like query syntax, and responds in JSON and Protocol Buffers over GRPC and HTTP. ...

  • MySQL
    MySQL

    The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...

  • PostgreSQL
    PostgreSQL

    PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. ...

  • MongoDB
    MongoDB

    MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...

Amazon Neptune alternatives & related posts

Neo4j logo

Neo4j

1.2K
351
The world’s leading Graph Database
1.2K
351
PROS OF NEO4J
  • 69
    Cypher – graph query language
  • 61
    Great graphdb
  • 33
    Open source
  • 31
    Rest api
  • 27
    High-Performance Native API
  • 23
    ACID
  • 21
    Easy setup
  • 17
    Great support
  • 11
    Clustering
  • 9
    Hot Backups
  • 8
    Great Web Admin UI
  • 7
    Powerful, flexible data model
  • 7
    Mature
  • 6
    Embeddable
  • 5
    Easy to Use and Model
  • 4
    Highly-available
  • 4
    Best Graphdb
  • 2
    It's awesome, I wanted to try it
  • 2
    Great onboarding process
  • 2
    Great query language and built in data browser
  • 2
    Used by Crunchbase
CONS OF NEO4J
  • 9
    Comparably slow
  • 4
    Can't store a vertex as JSON
  • 1
    Doesn't have a managed cloud service at low cost

related Neo4j posts

Shared insights
on
Neo4jNeo4jKafkaKafkaMySQLMySQL

Hello Stackshare. I'm currently doing some research on real-time reporting and analytics architectures. We have a use case where 1million+ records of users, 4million+ activities, and messages that we want to report against. The start was to present it directly from MySQL, which didn't go well and puts a heavy load on the database. Anybody can suggest something where we feed the data and can report in realtime? Read some articles about ElasticSearch and Kafka https://medium.com/@D11Engg/building-scalable-real-time-analytics-alerting-and-anomaly-detection-architecture-at-dream11-e20edec91d33 EDIT: also considering Neo4j

See more
Stephen Gheysens
Lead Solutions Engineer at Inscribe · | 7 upvotes · 473.2K views

Google Maps lets "property owners and their authorized representatives" upload indoor maps, but this appears to lack navigation ("wayfinding").

MappedIn is a platform and has SDKs for building indoor mapping experiences (https://www.mappedin.com/) and ESRI ArcGIS also offers some indoor mapping tools (https://www.esri.com/en-us/arcgis/indoor-gis/overview). Finally, there used to be a company called LocusLabs that is now a part of Atrius and they were often integrated into airlines' apps to provide airport maps with wayfinding (https://atrius.com/solutions/personal-experiences/personal-wayfinder/).

I previously worked at Mapbox and while I believe that it's a great platform for building map-based experiences, they don't have any simple solutions for indoor wayfinding. If I were doing this for fun as a side-project and prioritized saving money over saving time, here is what I would do:

  • Create a graph-based dataset representing the walking paths around your university, where nodes/vertexes represent the intersections of paths, and edges represent paths (literally paths outside, hallways, short path segments that represent entering rooms). You could store this in a hosted graph-based database like Neo4j, Amazon Neptune , or Azure Cosmos DB (with its Gremlin API) and use built-in "shortest path" queries, or deploy a PostgreSQL service with pgRouting.

  • Add two properties to each edge: one property for the distance between its nodes (libraries like @turf/helpers will have a distance function if you have the latitude & longitude of each node), and another property estimating the walking time (based on the distance). Once you have these values saved in a graph-based format, you should be able to easily query and find the data representation of paths between two points.

  • At this point, you'd have the routing problem solved and it would come down to building a UI. Mapbox arguably leads the industry in developer tools for custom map experiences. You could convert your nodes/edges to GeoJSON, then either upload to Mapbox and create a Tileset to visualize the paths, or add the GeoJSON to the map on the fly.

*You might be able to use open source routing tools like OSRM (https://github.com/Project-OSRM/osrm-backend/issues/6257) or Graphhopper (instead of a custom graph database implementation), but it would likely be more involved to maintain these services.

See more
GraphQL logo

GraphQL

33.8K
310
A data query language and runtime
33.8K
310
PROS OF GRAPHQL
  • 75
    Schemas defined by the requests made by the user
  • 63
    Will replace RESTful interfaces
  • 62
    The future of API's
  • 49
    The future of databases
  • 13
    Self-documenting
  • 12
    Get many resources in a single request
  • 6
    Query Language
  • 6
    Ask for what you need, get exactly that
  • 3
    Fetch different resources in one request
  • 3
    Type system
  • 3
    Evolve your API without versions
  • 2
    Ease of client creation
  • 2
    GraphiQL
  • 2
    Easy setup
  • 1
    "Open" document
  • 1
    Fast prototyping
  • 1
    Supports subscription
  • 1
    Standard
  • 1
    Good for apps that query at build time. (SSR/Gatsby)
  • 1
    1. Describe your data
  • 1
    Better versioning
  • 1
    Backed by Facebook
  • 1
    Easy to learn
CONS OF GRAPHQL
  • 4
    Hard to migrate from GraphQL to another technology
  • 4
    More code to type.
  • 2
    Takes longer to build compared to schemaless.
  • 1
    No support for caching
  • 1
    All the pros sound like NFT pitches
  • 1
    No support for streaming
  • 1
    Works just like any other API at runtime
  • 1
    N+1 fetch problem
  • 1
    No built in security

related GraphQL posts

Shared insights
on
Node.jsNode.jsGraphQLGraphQLMongoDBMongoDB

I just finished the very first version of my new hobby project: #MovieGeeks. It is a minimalist online movie catalog for you to save the movies you want to see and for rating the movies you already saw. This is just the beginning as I am planning to add more features on the lines of sharing and discovery

For the #BackEnd I decided to use Node.js , GraphQL and MongoDB:

  1. Node.js has a huge community so it will always be a safe choice in terms of libraries and finding solutions to problems you may have

  2. GraphQL because I needed to improve my skills with it and because I was never comfortable with the usual REST approach. I believe GraphQL is a better option as it feels more natural to write apis, it improves the development velocity, by definition it fixes the over-fetching and under-fetching problem that is so common on REST apis, and on top of that, the community is getting bigger and bigger.

  3. MongoDB was my choice for the database as I already have a lot of experience working on it and because, despite of some bad reputation it has acquired in the last months, I still believe it is a powerful database for at least a very long list of use cases such as the one I needed for my website

See more
Nick Rockwell
SVP, Engineering at Fastly · | 46 upvotes · 4.1M views

When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

See more
OrientDB logo

OrientDB

75
14
An open source NoSQL database management system
75
14
PROS OF ORIENTDB
  • 4
    Great graphdb
  • 2
    Great support
  • 2
    Open source
  • 1
    Multi-Model/Paradigm
  • 1
    ACID
  • 1
    Highly-available
  • 1
    Performance
  • 1
    Embeddable
  • 1
    Rest api
CONS OF ORIENTDB
  • 4
    Unstable

related OrientDB posts

We have an in-house build experiment management system. We produce samples as input to the next step, which then could produce 1 sample(1-1) and many samples (1 - many). There are many steps like this. So far, we are tracking genealogy (limited tracking) in the MySQL database, which is becoming hard to trace back to the original material or sample(I can give more details if required). So, we are considering a Graph database. I am requesting advice from the experts.

  1. Is a graph database the right choice, or can we manage with RDBMS?
  2. If RDBMS, which RDMS, which feature, or which approach could make this manageable or sustainable
  3. If Graph database(Neo4j, OrientDB, Azure Cosmos DB, Amazon Neptune, ArangoDB), which one is good, and what are the best practices?

I am sorry that this might be a loaded question.

See more
JanusGraph logo

JanusGraph

43
0
Open-source, distributed graph database
43
0
PROS OF JANUSGRAPH
    Be the first to leave a pro
    CONS OF JANUSGRAPH
      Be the first to leave a con

      related JanusGraph posts

      Dgraph logo

      Dgraph

      125
      9
      Fast, Distributed Graph DB
      125
      9
      PROS OF DGRAPH
      • 3
        Graphql as a query language is nice if you like apollo
      • 2
        Easy set up
      • 2
        Low learning curve
      • 1
        Open Source
      • 1
        High Performance
      CONS OF DGRAPH
        Be the first to leave a con

        related Dgraph posts

        MySQL logo

        MySQL

        125.4K
        3.8K
        The world's most popular open source database
        125.4K
        3.8K
        PROS OF MYSQL
        • 800
          Sql
        • 679
          Free
        • 562
          Easy
        • 528
          Widely used
        • 490
          Open source
        • 180
          High availability
        • 160
          Cross-platform support
        • 104
          Great community
        • 79
          Secure
        • 75
          Full-text indexing and searching
        • 26
          Fast, open, available
        • 16
          Reliable
        • 16
          SSL support
        • 15
          Robust
        • 9
          Enterprise Version
        • 7
          Easy to set up on all platforms
        • 3
          NoSQL access to JSON data type
        • 1
          Relational database
        • 1
          Easy, light, scalable
        • 1
          Sequel Pro (best SQL GUI)
        • 1
          Replica Support
        CONS OF MYSQL
        • 16
          Owned by a company with their own agenda
        • 3
          Can't roll back schema changes

        related MySQL posts

        Nick Rockwell
        SVP, Engineering at Fastly · | 46 upvotes · 4.1M views

        When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

        So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

        React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

        Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

        See more
        Tim Abbott

        We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

        We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

        And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

        I can't recommend it highly enough.

        See more
        PostgreSQL logo

        PostgreSQL

        98.3K
        3.5K
        A powerful, open source object-relational database system
        98.3K
        3.5K
        PROS OF POSTGRESQL
        • 764
          Relational database
        • 510
          High availability
        • 439
          Enterprise class database
        • 383
          Sql
        • 304
          Sql + nosql
        • 173
          Great community
        • 147
          Easy to setup
        • 131
          Heroku
        • 130
          Secure by default
        • 113
          Postgis
        • 50
          Supports Key-Value
        • 48
          Great JSON support
        • 34
          Cross platform
        • 33
          Extensible
        • 28
          Replication
        • 26
          Triggers
        • 23
          Multiversion concurrency control
        • 23
          Rollback
        • 21
          Open source
        • 18
          Heroku Add-on
        • 17
          Stable, Simple and Good Performance
        • 15
          Powerful
        • 13
          Lets be serious, what other SQL DB would you go for?
        • 11
          Good documentation
        • 9
          Scalable
        • 8
          Free
        • 8
          Reliable
        • 8
          Intelligent optimizer
        • 7
          Transactional DDL
        • 7
          Modern
        • 6
          One stop solution for all things sql no matter the os
        • 5
          Relational database with MVCC
        • 5
          Faster Development
        • 4
          Full-Text Search
        • 4
          Developer friendly
        • 3
          Excellent source code
        • 3
          Free version
        • 3
          Great DB for Transactional system or Application
        • 3
          Relational datanbase
        • 3
          search
        • 3
          Open-source
        • 2
          Text
        • 2
          Full-text
        • 1
          Can handle up to petabytes worth of size
        • 1
          Composability
        • 1
          Multiple procedural languages supported
        • 0
          Native
        CONS OF POSTGRESQL
        • 10
          Table/index bloatings

        related PostgreSQL posts

        Simon Reymann
        Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.2M views

        Our whole DevOps stack consists of the following tools:

        • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
        • Respectively Git as revision control system
        • SourceTree as Git GUI
        • Visual Studio Code as IDE
        • CircleCI for continuous integration (automatize development process)
        • Prettier / TSLint / ESLint as code linter
        • SonarQube as quality gate
        • Docker as container management (incl. Docker Compose for multi-container application management)
        • VirtualBox for operating system simulation tests
        • Kubernetes as cluster management for docker containers
        • Heroku for deploying in test environments
        • nginx as web server (preferably used as facade server in production environment)
        • SSLMate (using OpenSSL) for certificate management
        • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
        • PostgreSQL as preferred database system
        • Redis as preferred in-memory database/store (great for caching)

        The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

        • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
        • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
        • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
        • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
        • Scalability: All-in-one framework for distributed systems.
        • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
        See more
        Jeyabalaji Subramanian

        Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

        We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

        Based on the above criteria, we selected the following tools to perform the end to end data replication:

        We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

        We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

        In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

        Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

        In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

        See more
        MongoDB logo

        MongoDB

        93.6K
        4.1K
        The database for giant ideas
        93.6K
        4.1K
        PROS OF MONGODB
        • 828
          Document-oriented storage
        • 593
          No sql
        • 553
          Ease of use
        • 464
          Fast
        • 410
          High performance
        • 255
          Free
        • 218
          Open source
        • 180
          Flexible
        • 145
          Replication & high availability
        • 112
          Easy to maintain
        • 42
          Querying
        • 39
          Easy scalability
        • 38
          Auto-sharding
        • 37
          High availability
        • 31
          Map/reduce
        • 27
          Document database
        • 25
          Easy setup
        • 25
          Full index support
        • 16
          Reliable
        • 15
          Fast in-place updates
        • 14
          Agile programming, flexible, fast
        • 12
          No database migrations
        • 8
          Easy integration with Node.Js
        • 8
          Enterprise
        • 6
          Enterprise Support
        • 5
          Great NoSQL DB
        • 4
          Support for many languages through different drivers
        • 3
          Schemaless
        • 3
          Aggregation Framework
        • 3
          Drivers support is good
        • 2
          Fast
        • 2
          Managed service
        • 2
          Easy to Scale
        • 2
          Awesome
        • 2
          Consistent
        • 1
          Good GUI
        • 1
          Acid Compliant
        CONS OF MONGODB
        • 6
          Very slowly for connected models that require joins
        • 3
          Not acid compliant
        • 2
          Proprietary query language

        related MongoDB posts

        Jeyabalaji Subramanian

        Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

        We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

        Based on the above criteria, we selected the following tools to perform the end to end data replication:

        We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

        We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

        In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

        Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

        In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

        See more
        Robert Zuber

        We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

        As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

        When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

        See more