What is Piwik and what are its top alternatives?
Piwik, now known as Matomo, is an open-source web analytics platform that offers a comprehensive suite of features for tracking and analyzing user behavior on websites. Key features include customizable dashboards, real-time tracking, goal setting, heatmaps, and A/B testing. However, some limitations of Piwik include its self-hosted nature, which may require technical expertise to set up and maintain, as well as potential performance issues with large amounts of data.
Google Analytics: Google Analytics is one of the most widely-used web analytics tools, offering features such as audience demographics, user behavior tracking, and conversion tracking. Pros include its user-friendly interface and integration with other Google services, but cons may include data privacy concerns.
Adobe Analytics: Adobe Analytics is a robust analytics platform that provides deep insights into user behavior, segmentation, and marketing campaigns. Pros include its advanced reporting capabilities and integrations with other Adobe products, but cons may include high cost and complex setup.
Mixpanel: Mixpanel focuses on event-based tracking, allowing users to track specific interactions and behaviors on their websites or apps. Pros include its powerful segmentation and funnel analysis features, but cons may include limited free tier offerings and pricing based on data volume.
Heap: Heap automatically captures user interactions on websites and mobile apps, providing a visual interface for analysis and insights. Pros include its ease of use and retroactive tracking capabilities, but cons may include limited customization options compared to Piwik.
Kissmetrics: Kissmetrics specializes in customer analytics, offering features like cohort analysis, customer journey tracking, and customer segmentation. Pros include its focus on customer-centric insights, but cons may include pricing based on the number of profiles tracked.
Woopra: Woopra is a real-time customer analytics platform that provides detailed insights into user behavior and engagement. Pros include its live dashboard and integrations with other tools, but cons may include pricing for certain advanced features.
Clicky: Clicky is a real-time web analytics tool that offers features like heatmaps, uptime monitoring, and custom tracking options. Pros include its user-friendly interface and detailed insights, but cons may include limitations on data retention for free accounts.
StatCounter: StatCounter is a website analytics tool that focuses on traffic analysis, visitor tracking, and keyword analysis. Pros include its easy setup and affordable pricing, but cons may include a lack of more advanced features found in Piwik.
Open Web Analytics: Open Web Analytics is an open-source web analytics platform that offers features such as event tracking, heatmaps, and user segmentation. Pros include its customizable nature and self-hosted option, but cons may include a steeper learning curve compared to Piwik.
Fathom Analytics: Fathom Analytics is a privacy-focused analytics platform that provides essential insights without tracking personal data. Pros include its user privacy-friendly approach and simplified interface, but cons may include limited customization options compared to more comprehensive tools like Piwik.
Top Alternatives to Piwik
- Google Analytics
Google Analytics lets you measure your advertising ROI as well as track your Flash, video, and social networking sites and applications. ...
- Mixpanel
Mixpanel helps companies build better products through data. With our powerful, self-serve product analytics solution, teams can easily analyze how and why people engage, convert, and retain to improve their user experience. ...
- Matomo
It is a web analytics platform designed to give you the conclusive insights with our complete range of features. You can also evaluate the full user-experience of your visitor’s behaviour with its Conversion Optimization features, including Heatmaps, Sessions Recordings, Funnels, Goals, Form Analytics and A/B Testing. ...
- Open Web Analytics
It is open source web analytics software that you can use to track and analyze how people use your websites and applications. It provides website owners and developers with easy ways to add web analytics to their sites using simple Javascript, PHP, or REST based APIs. ...
- Adobe Analytics
It is a web analytics service used in the measurement, collection, analysis and reporting of web data for purposes of understanding and optimizing web usage. It makes hard things easy. Its AI and machine learning brings hidden opportunities and answers to everyone with the click of a button. ...
- Countly
Countly is a product analytics solution and innovation enabler that helps organizations track product performance and user journey and behavior across mobile, web, and desktop applications. ...
- Snowplow
Snowplow is a real-time event data pipeline that lets you track, contextualize, validate and model your customers’ behaviour across your entire digital estate. ...
- Elasticsearch
Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack). ...
Piwik alternatives & related posts
- Free1.5K
- Easy setup926
- Data visualization890
- Real-time stats698
- Comprehensive feature set405
- Goals tracking181
- Powerful funnel conversion reporting154
- Customizable reports138
- Custom events try83
- Elastic api53
- Updated regulary14
- Interactive Documentation8
- Google play3
- Industry Standard2
- Advanced ecommerce2
- Walkman music video playlist2
- Medium / Channel data split1
- Irina1
- Financial Management Challenges -2015h1
- Lifesaver1
- Easy to integrate1
- Confusing UX/UI11
- Super complex8
- Very hard to build out funnels6
- Poor web performance metrics4
- Very easy to confuse the user of the analytics3
- Time spent on page isn't accurate out of the box2
related Google Analytics posts
We used to use Google Analytics to get audience insights while running a startup and we are constantly doing experiments to lear our users. We are a small team and we have a lack of time to keep up with trends. Here is the list of problems we are experiencing: - Analytics takes too much time - We have enough time to regularly monitor analytics - Google Analytics interface is too advanced and complicated - It's difficult to detect anomalies and trends in GA
We considered other solutions on a market, but found 2 main issues: - The solution created for analytic experts - The solution is pretty expensive and non-automated
After learning this fact we decided to create AI-powered Slack bot to analyze Google Analytics and share trends. The bot is currently working and highlights trends for us.
We are thinking about publishing this solution as a SaaS. If you are interested in automating Google Analytics analysis, drop a comment and you'll get an early access.
We will implement this solution only if we have 20+ early adaptors. Leave a message with your thought. I appreciate any feedback.
In order to accurately measure & track user behaviour on our platform we moved over quickly from the initial solution using Google Analytics to a custom-built one due to resource & pricing concerns we had.
While this does sound complicated, it’s as easy as clients sending JSON blobs of events to Amazon Kinesis from where we use AWS Lambda & Amazon SQS to batch and process incoming events and then ingest them into Google BigQuery. Once events are stored in BigQuery (which usually only takes a second from the time the client sends the data until it’s available), we can use almost-standard-SQL to simply query for data while Google makes sure that, even with terabytes of data being scanned, query times stay in the range of seconds rather than hours. Before ingesting their data into the pipeline, our mobile clients are aggregating events internally and, once a certain threshold is reached or the app is going to the background, sending the events as a JSON blob into the stream.
In the past we had workers running that continuously read from the stream and would validate and post-process the data and then enqueue them for other workers to write them to BigQuery. We went ahead and implemented the Lambda-based approach in such a way that Lambda functions would automatically be triggered for incoming records, pre-aggregate events, and write them back to SQS, from which we then read them, and persist the events to BigQuery. While this approach had a couple of bumps on the road, like re-triggering functions asynchronously to keep up with the stream and proper batch sizes, we finally managed to get it running in a reliable way and are very happy with this solution today.
#ServerlessTaskProcessing #GeneralAnalytics #RealTimeDataProcessing #BigDataAsAService
Mixpanel
- Great visualization ui144
- Easy integration108
- Great funnel funcionality78
- Free58
- A wide range of tools22
- Powerful Graph Search15
- Responsive Customer Support11
- Nice reporting2
- Messaging (notification, email) features are weak2
- Paid plans can get expensive2
- Limited dashboard capabilities1
related Mixpanel posts
Functionally, Amplitude and Mixpanel are incredibly similar. They both offer almost all the same functionality around tracking and visualizing user actions for analytics. You can track A/B test results in both. We ended up going with Amplitude at BaseDash because it has a more generous free tier for our uses (10 million actions per month, versus Mixpanel's 1000 monthly tracked users).
Segment isn't meant to compete with these tools, but instead acts as an API to send actions to them, and other analytics tools. If you're just sending event data to one of these tools, you probably don't need Segment. If you're using other analytics tools like Google Analytics and FullStory, Segment makes it easy to send events to all your tools at once.
Hi there, we are a seed-stage startup in the personal development space. I am looking at building the marketing stack tool to have an accurate view of the user experience from acquisition through to adoption and retention for our upcoming React Native Mobile app. We qualify for the startup program of Segment and Mixpanel, which seems like a good option to get rolling and scale for free to learn how our current 60K free members will interact in the new subscription-based platform. I was considering AppsFlyer for attribution, and I am now looking at an affordable yet scalable Mobile Marketing tool vs. building in-house. Braze looks great, so does Leanplum, but the price points are 30K to start, which we can't do. I looked at OneSignal, but it doesn't have user flow visualization. I am now looking into Urban Airship and Iterable. Any advice would be much appreciated!
- Updated regulary1
- Goals tracking1
- Self-hosted1
- Open Source1
- Full data control1
- Free1
related Matomo posts
related Open Web Analytics posts
Adobe Analytics
related Adobe Analytics posts
- Easy setup4
- Funnels3
- Great UI3
- Omni Channel2
- Custom Dashboards2
- Extensible via plugins2
- Custom Events1
- Secure1
- Extensible Product Analytics1
- Private Cloud1
- Cohorts1
- Push Notifications1
- Advanced Segmentation1
- User Profiles1
- Push Notifications1
- Crashes1
related Countly posts
- Can track any type of digital event7
- First-party tracking5
- Data quality5
- Real-time streams4
- Completely open source4
- Redshift integration4
- Snowflake integration3
- BigQuery integration3
related Snowplow posts
Trying to establish a data lake(or maybe puddle) for my org's Data Sharing project. The idea is that outside partners would send cuts of their PHI data, regardless of format/variables/systems, to our Data Team who would then harmonize the data, create data marts, and eventually use it for something. End-to-end, I'm envisioning:
- Ingestion->Secure, role-based, self service portal for users to upload data (1a. bonus points if it can preform basic validations/masking)
- Storage->Amazon S3 seems like the cheapest. We probably won't need very big, even at full capacity. Our current storage is a secure Box folder that has ~4GB with several batches of test data, code, presentations, and planning docs.
- Data Catalog-> AWS Glue? Azure Data Factory? Snowplow? is the main difference basically based on the vendor? We also will have Data Dictionaries/Codebooks from submitters. Where would they fit in?
- Partitions-> I've seen Cassandra and YARN mentioned, but have no experience with either
- Processing-> We want to use SAS if at all possible. What will work with SAS code?
- Pipeline/Automation->The check-in and verification processes that have been outlined are rather involved. Some sort of automated messaging or approval workflow would be nice
- I have very little guidance on what a "Data Mart" should look like, so I'm going with the idea that it would be another "experimental" partition. Unless there's an actual mart-building paradigm I've missed?
- An end user might use the catalog to pull certain de-identified data sets from the marts. Again, role-based access and self-service gui would be preferable. I'm the only full-time tech person on this project, but I'm mostly an OOP, HTML, JavaScript, and some SQL programmer. Most of this is out of my repertoire. I've done a lot of research, but I can't be an effective evangelist without hands-on experience. Since we're starting a new year of our grant, they've finally decided to let me try some stuff out. Any pointers would be appreciated!
- Powerful api328
- Great search engine315
- Open source231
- Restful214
- Near real-time search200
- Free98
- Search everything85
- Easy to get started54
- Analytics45
- Distributed26
- Fast search6
- More than a search engine5
- Great docs4
- Awesome, great tool4
- Highly Available3
- Easy to scale3
- Potato2
- Document Store2
- Great customer support2
- Intuitive API2
- Nosql DB2
- Great piece of software2
- Reliable2
- Fast2
- Easy setup2
- Open1
- Easy to get hot data1
- Github1
- Elaticsearch1
- Actively developing1
- Responsive maintainers on GitHub1
- Ecosystem1
- Not stable1
- Scalability1
- Community0
- Resource hungry7
- Diffecult to get started6
- Expensive5
- Hard to keep stable at large scale4
related Elasticsearch posts
We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.
We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).
And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.
I can't recommend it highly enough.
Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.