Alternatives to H2O logo

Alternatives to H2O

TensorFlow, DataRobot, scikit-learn, JavaScript, and Git are the most popular alternatives and competitors to H2O.
121
210
+ 1
8

What is H2O and what are its top alternatives?

H2O is an open-source machine learning platform that offers various algorithms for data processing and predictive modeling. Its key features include fast and scalable machine learning algorithms, support for big data processing, automatic model tuning, and a user-friendly interface. However, some limitations of H2O include the lack of support for deep learning models, limited visualization capabilities, and a steeper learning curve for beginners.

  1. scikit-learn: scikit-learn is a popular machine learning library in Python that provides a wide range of algorithms for data processing and modeling. Key features include ease of use, extensive documentation, and strong community support. However, it may not be as scalable for large datasets compared to H2O.
  2. TensorFlow: TensorFlow is an open-source machine learning framework developed by Google that is widely used for building deep learning models. Key features include support for neural networks, distributed computing, and model deployment. However, TensorFlow can have a steeper learning curve compared to H2O.
  3. XGBoost: XGBoost is a popular gradient boosting library known for its speed and performance in machine learning competitions. Key features include scalability, efficiency, and support for tree-based models. However, XGBoost may not offer as diverse a range of algorithms as H2O.
  4. PyTorch: PyTorch is another deep learning framework that is widely used for research and production applications. Key features include dynamic computation graphs, ease of use, and strong support for GPU acceleration. However, PyTorch may not offer the same level of scalability as H2O.
  5. Keras: Keras is a high-level neural networks API built on top of TensorFlow and allows for fast prototyping of deep learning models. Key features include simplicity, modularity, and support for multiple backends. However, Keras may not have the same level of scalability as H2O.
  6. Apache Spark MLlib: Apache Spark MLlib is a scalable machine learning library built on top of the Apache Spark framework. Key features include scalability, distributed computing, and support for a wide range of machine learning algorithms. However, MLlib may require more setup and configuration compared to H2O.
  7. Databricks: Databricks is a unified analytics platform that offers built-in support for machine learning and deep learning. Key features include collaborative notebooks, automated machine learning, and cloud integration. However, Databricks may come with a higher price tag compared to H2O.
  8. RapidMiner: RapidMiner is an all-in-one data science platform that offers a visual workflow designer for building machine learning models. Key features include ease of use, automation, and support for a wide range of data sources. However, RapidMiner may not offer the same level of customizability as H2O.
  9. DataRobot: DataRobot is an automated machine learning platform that helps users to build, deploy, and manage machine learning models. Key features include automation, interpretability, and deployment flexibility. However, DataRobot may come with a higher cost compared to H2O.
  10. Microsoft Azure Machine Learning: Microsoft Azure Machine Learning is a cloud-based platform that offers a range of machine learning services for data scientists and developers. Key features include scalability, integration with other Azure services, and automated machine learning capabilities. However, Azure ML may require users to have a Microsoft Azure subscription.

Top Alternatives to H2O

  • TensorFlow
    TensorFlow

    TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. ...

  • DataRobot
    DataRobot

    It is an enterprise-grade predictive analysis software for business analysts, data scientists, executives, and IT professionals. It analyzes numerous innovative machine learning algorithms to establish, implement, and build bespoke predictive models for each situation. ...

  • scikit-learn
    scikit-learn

    scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license. ...

  • JavaScript
    JavaScript

    JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles. ...

  • Git
    Git

    Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...

  • GitHub
    GitHub

    GitHub is the best place to share code with friends, co-workers, classmates, and complete strangers. Over three million people use GitHub to build amazing things together. ...

  • Python
    Python

    Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...

  • jQuery
    jQuery

    jQuery is a cross-platform JavaScript library designed to simplify the client-side scripting of HTML. ...

H2O alternatives & related posts

TensorFlow logo

TensorFlow

3.8K
3.5K
106
Open Source Software Library for Machine Intelligence
3.8K
3.5K
+ 1
106
PROS OF TENSORFLOW
  • 32
    High Performance
  • 19
    Connect Research and Production
  • 16
    Deep Flexibility
  • 12
    Auto-Differentiation
  • 11
    True Portability
  • 6
    Easy to use
  • 5
    High level abstraction
  • 5
    Powerful
CONS OF TENSORFLOW
  • 9
    Hard
  • 6
    Hard to debug
  • 2
    Documentation not very helpful

related TensorFlow posts

Shared insights
on
TensorFlowTensorFlowDjangoDjangoPythonPython

Hi, I have an LMS application, currently developed in Python-Django.

It works all very well, students can view their classes and submit exams, but I have noticed that some students are sharing exam answers with other students and let's say they already have a model of the exams.

I want with the help of artificial intelligence, the exams to have different questions and in a different order for each student, what technology should I learn to develop something like this? I am a Python-Django developer but my focus is on web development, I have never touched anything from A.I.

What do you think about TensorFlow?

Please, I would appreciate all your ideas and opinions, thank you very much in advance.

See more
Tom Klein

Google Analytics is a great tool to analyze your traffic. To debug our software and ask questions, we love to use Postman and Stack Overflow. Google Drive helps our team to share documents. We're able to build our great products through the APIs by Google Maps, CloudFlare, Stripe, PayPal, Twilio, Let's Encrypt, and TensorFlow.

See more
DataRobot logo

DataRobot

24
83
0
Lets you accelerate your AI success today with cutting-edge machine learning and the team you have in place
24
83
+ 1
0
PROS OF DATAROBOT
    Be the first to leave a pro
    CONS OF DATAROBOT
      Be the first to leave a con

      related DataRobot posts

      scikit-learn logo

      scikit-learn

      1.2K
      1.1K
      44
      Easy-to-use and general-purpose machine learning in Python
      1.2K
      1.1K
      + 1
      44
      PROS OF SCIKIT-LEARN
      • 25
        Scientific computing
      • 19
        Easy
      CONS OF SCIKIT-LEARN
      • 2
        Limited

      related scikit-learn posts

      Should I continue learning Django or take this Spring opportunity? I have been coding in python for about 2 years. I am currently learning Django and I am enjoying it. I also have some knowledge of data science libraries (Pandas, NumPy, scikit-learn, PyTorch). I am currently enhancing my web development and software engineering skills and may shift later into data science since I came from a medical background. The issue is that I am offered now a very trustworthy 9 months program teaching Java/Spring. The graduates of this program work directly in well know tech companies. Although I have been planning to continue with my Python, the other opportunity makes me hesitant since it will put me to work in a specific roadmap with deadlines and mentors. I also found on glassdoor that Spring jobs are way more than Django. Should I apply for this program or continue my journey?

      See more

      Hi, I wanted to jump into Machine Learning.

      I first tried brain.js, but its capabilities are very limited and it abstracts most concepts of ML away. I've tried TensorFlow, but it's very hard for me to understand the concepts.

      Now, I thought about trying NumPy or scikit-learn, but I don't really know much about ML, but still want to use 100% Power of ML.

      What do you recommend me to use as a beginner in ML?

      Also do you know any good tutorials which explain how ML works and how to implement it in a given framework (ideal in german)?

      Thanks for your attention & help :D

      See more
      JavaScript logo

      JavaScript

      357.2K
      271.5K
      8.1K
      Lightweight, interpreted, object-oriented language with first-class functions
      357.2K
      271.5K
      + 1
      8.1K
      PROS OF JAVASCRIPT
      • 1.7K
        Can be used on frontend/backend
      • 1.5K
        It's everywhere
      • 1.2K
        Lots of great frameworks
      • 897
        Fast
      • 745
        Light weight
      • 425
        Flexible
      • 392
        You can't get a device today that doesn't run js
      • 286
        Non-blocking i/o
      • 237
        Ubiquitousness
      • 191
        Expressive
      • 55
        Extended functionality to web pages
      • 49
        Relatively easy language
      • 46
        Executed on the client side
      • 30
        Relatively fast to the end user
      • 25
        Pure Javascript
      • 21
        Functional programming
      • 15
        Async
      • 13
        Full-stack
      • 12
        Setup is easy
      • 12
        Its everywhere
      • 12
        Future Language of The Web
      • 11
        Because I love functions
      • 11
        JavaScript is the New PHP
      • 10
        Like it or not, JS is part of the web standard
      • 9
        Expansive community
      • 9
        Everyone use it
      • 9
        Can be used in backend, frontend and DB
      • 9
        Easy
      • 8
        Most Popular Language in the World
      • 8
        Powerful
      • 8
        Can be used both as frontend and backend as well
      • 8
        For the good parts
      • 8
        No need to use PHP
      • 8
        Easy to hire developers
      • 7
        Agile, packages simple to use
      • 7
        Love-hate relationship
      • 7
        Photoshop has 3 JS runtimes built in
      • 7
        Evolution of C
      • 7
        It's fun
      • 7
        Hard not to use
      • 7
        Versitile
      • 7
        Its fun and fast
      • 7
        Nice
      • 7
        Popularized Class-Less Architecture & Lambdas
      • 7
        Supports lambdas and closures
      • 6
        It let's me use Babel & Typescript
      • 6
        Can be used on frontend/backend/Mobile/create PRO Ui
      • 6
        1.6K Can be used on frontend/backend
      • 6
        Client side JS uses the visitors CPU to save Server Res
      • 6
        Easy to make something
      • 5
        Clojurescript
      • 5
        Promise relationship
      • 5
        Stockholm Syndrome
      • 5
        Function expressions are useful for callbacks
      • 5
        Scope manipulation
      • 5
        Everywhere
      • 5
        Client processing
      • 5
        What to add
      • 4
        Because it is so simple and lightweight
      • 4
        Only Programming language on browser
      • 1
        Test
      • 1
        Hard to learn
      • 1
        Test2
      • 1
        Not the best
      • 1
        Easy to understand
      • 1
        Subskill #4
      • 1
        Easy to learn
      • 0
        Hard 彤
      CONS OF JAVASCRIPT
      • 22
        A constant moving target, too much churn
      • 20
        Horribly inconsistent
      • 15
        Javascript is the New PHP
      • 9
        No ability to monitor memory utilitization
      • 8
        Shows Zero output in case of ANY error
      • 7
        Thinks strange results are better than errors
      • 6
        Can be ugly
      • 3
        No GitHub
      • 2
        Slow
      • 0
        HORRIBLE DOCUMENTS, faulty code, repo has bugs

      related JavaScript posts

      Zach Holman

      Oof. I have truly hated JavaScript for a long time. Like, for over twenty years now. Like, since the Clinton administration. It's always been a nightmare to deal with all of the aspects of that silly language.

      But wowza, things have changed. Tooling is just way, way better. I'm primarily web-oriented, and using React and Apollo together the past few years really opened my eyes to building rich apps. And I deeply apologize for using the phrase rich apps; I don't think I've ever said such Enterprisey words before.

      But yeah, things are different now. I still love Rails, and still use it for a lot of apps I build. But it's that silly rich apps phrase that's the problem. Users have way more comprehensive expectations than they did even five years ago, and the JS community does a good job at building tools and tech that tackle the problems of making heavy, complicated UI and frontend work.

      Obviously there's a lot of things happening here, so just saying "JavaScript isn't terrible" might encompass a huge amount of libraries and frameworks. But if you're like me, yeah, give things another shot- I'm somehow not hating on JavaScript anymore and... gulp... I kinda love it.

      See more
      Conor Myhrvold
      Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 11.6M views

      How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

      Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

      Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

      https://eng.uber.com/distributed-tracing/

      (GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

      Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

      See more
      Git logo

      Git

      295.6K
      177K
      6.6K
      Fast, scalable, distributed revision control system
      295.6K
      177K
      + 1
      6.6K
      PROS OF GIT
      • 1.4K
        Distributed version control system
      • 1.1K
        Efficient branching and merging
      • 959
        Fast
      • 845
        Open source
      • 726
        Better than svn
      • 368
        Great command-line application
      • 306
        Simple
      • 291
        Free
      • 232
        Easy to use
      • 222
        Does not require server
      • 27
        Distributed
      • 22
        Small & Fast
      • 18
        Feature based workflow
      • 15
        Staging Area
      • 13
        Most wide-spread VSC
      • 11
        Role-based codelines
      • 11
        Disposable Experimentation
      • 7
        Frictionless Context Switching
      • 6
        Data Assurance
      • 5
        Efficient
      • 4
        Just awesome
      • 3
        Github integration
      • 3
        Easy branching and merging
      • 2
        Compatible
      • 2
        Flexible
      • 2
        Possible to lose history and commits
      • 1
        Rebase supported natively; reflog; access to plumbing
      • 1
        Light
      • 1
        Team Integration
      • 1
        Fast, scalable, distributed revision control system
      • 1
        Easy
      • 1
        Flexible, easy, Safe, and fast
      • 1
        CLI is great, but the GUI tools are awesome
      • 1
        It's what you do
      • 0
        Phinx
      CONS OF GIT
      • 16
        Hard to learn
      • 11
        Inconsistent command line interface
      • 9
        Easy to lose uncommitted work
      • 7
        Worst documentation ever possibly made
      • 5
        Awful merge handling
      • 3
        Unexistent preventive security flows
      • 3
        Rebase hell
      • 2
        When --force is disabled, cannot rebase
      • 2
        Ironically even die-hard supporters screw up badly
      • 1
        Doesn't scale for big data

      related Git posts

      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 10.3M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more
      Tymoteusz Paul
      Devops guy at X20X Development LTD · | 23 upvotes · 9.2M views

      Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

      It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

      I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

      We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

      If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

      The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

      Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

      See more
      GitHub logo

      GitHub

      283.4K
      247.5K
      10.3K
      Powerful collaboration, review, and code management for open source and private development projects
      283.4K
      247.5K
      + 1
      10.3K
      PROS OF GITHUB
      • 1.8K
        Open source friendly
      • 1.5K
        Easy source control
      • 1.3K
        Nice UI
      • 1.1K
        Great for team collaboration
      • 867
        Easy setup
      • 504
        Issue tracker
      • 486
        Great community
      • 483
        Remote team collaboration
      • 451
        Great way to share
      • 442
        Pull request and features planning
      • 147
        Just works
      • 132
        Integrated in many tools
      • 121
        Free Public Repos
      • 116
        Github Gists
      • 112
        Github pages
      • 83
        Easy to find repos
      • 62
        Open source
      • 60
        It's free
      • 60
        Easy to find projects
      • 56
        Network effect
      • 49
        Extensive API
      • 43
        Organizations
      • 42
        Branching
      • 34
        Developer Profiles
      • 32
        Git Powered Wikis
      • 30
        Great for collaboration
      • 24
        It's fun
      • 23
        Clean interface and good integrations
      • 22
        Community SDK involvement
      • 20
        Learn from others source code
      • 16
        Because: Git
      • 14
        It integrates directly with Azure
      • 10
        Standard in Open Source collab
      • 10
        Newsfeed
      • 8
        It integrates directly with Hipchat
      • 8
        Fast
      • 8
        Beautiful user experience
      • 7
        Easy to discover new code libraries
      • 6
        Smooth integration
      • 6
        Cloud SCM
      • 6
        Nice API
      • 6
        Graphs
      • 6
        Integrations
      • 6
        It's awesome
      • 5
        Quick Onboarding
      • 5
        Reliable
      • 5
        Remarkable uptime
      • 5
        CI Integration
      • 5
        Hands down best online Git service available
      • 4
        Uses GIT
      • 4
        Version Control
      • 4
        Simple but powerful
      • 4
        Unlimited Public Repos at no cost
      • 4
        Free HTML hosting
      • 4
        Security options
      • 4
        Loved by developers
      • 4
        Easy to use and collaborate with others
      • 3
        Ci
      • 3
        IAM
      • 3
        Nice to use
      • 3
        Easy deployment via SSH
      • 2
        Easy to use
      • 2
        Leads the copycats
      • 2
        All in one development service
      • 2
        Free private repos
      • 2
        Free HTML hostings
      • 2
        Easy and efficient maintainance of the projects
      • 2
        Beautiful
      • 2
        Easy source control and everything is backed up
      • 2
        IAM integration
      • 2
        Very Easy to Use
      • 2
        Good tools support
      • 2
        Issues tracker
      • 2
        Never dethroned
      • 2
        Self Hosted
      • 1
        Dasf
      • 1
        Profound
      CONS OF GITHUB
      • 54
        Owned by micrcosoft
      • 38
        Expensive for lone developers that want private repos
      • 15
        Relatively slow product/feature release cadence
      • 10
        API scoping could be better
      • 9
        Only 3 collaborators for private repos
      • 4
        Limited featureset for issue management
      • 3
        Does not have a graph for showing history like git lens
      • 2
        GitHub Packages does not support SNAPSHOT versions
      • 1
        No multilingual interface
      • 1
        Takes a long time to commit
      • 1
        Expensive

      related GitHub posts

      Johnny Bell

      I was building a personal project that I needed to store items in a real time database. I am more comfortable with my Frontend skills than my backend so I didn't want to spend time building out anything in Ruby or Go.

      I stumbled on Firebase by #Google, and it was really all I needed. It had realtime data, an area for storing file uploads and best of all for the amount of data I needed it was free!

      I built out my application using tools I was familiar with, React for the framework, Redux.js to manage my state across components, and styled-components for the styling.

      Now as this was a project I was just working on in my free time for fun I didn't really want to pay for hosting. I did some research and I found Netlify. I had actually seen them at #ReactRally the year before and deployed a Gatsby site to Netlify already.

      Netlify was very easy to setup and link to my GitHub account you select a repo and pretty much with very little configuration you have a live site that will deploy every time you push to master.

      With the selection of these tools I was able to build out my application, connect it to a realtime database, and deploy to a live environment all with $0 spent.

      If you're looking to build out a small app I suggest giving these tools a go as you can get your idea out into the real world for absolutely no cost.

      See more

      Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.

      Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!

      Check Out My Architecture: CLICK ME

      Check out the GitHub repo attached

      See more
      Python logo

      Python

      243.2K
      198.4K
      6.9K
      A clear and powerful object-oriented programming language, comparable to Perl, Ruby, Scheme, or Java.
      243.2K
      198.4K
      + 1
      6.9K
      PROS OF PYTHON
      • 1.2K
        Great libraries
      • 961
        Readable code
      • 847
        Beautiful code
      • 787
        Rapid development
      • 689
        Large community
      • 437
        Open source
      • 393
        Elegant
      • 282
        Great community
      • 272
        Object oriented
      • 220
        Dynamic typing
      • 77
        Great standard library
      • 60
        Very fast
      • 55
        Functional programming
      • 49
        Easy to learn
      • 45
        Scientific computing
      • 35
        Great documentation
      • 29
        Productivity
      • 28
        Matlab alternative
      • 28
        Easy to read
      • 24
        Simple is better than complex
      • 20
        It's the way I think
      • 19
        Imperative
      • 18
        Free
      • 18
        Very programmer and non-programmer friendly
      • 17
        Machine learning support
      • 17
        Powerfull language
      • 16
        Fast and simple
      • 14
        Scripting
      • 12
        Explicit is better than implicit
      • 11
        Ease of development
      • 10
        Clear and easy and powerfull
      • 9
        Unlimited power
      • 8
        It's lean and fun to code
      • 8
        Import antigravity
      • 7
        Print "life is short, use python"
      • 7
        Python has great libraries for data processing
      • 6
        Great for tooling
      • 6
        Rapid Prototyping
      • 6
        Readability counts
      • 6
        Fast coding and good for competitions
      • 6
        There should be one-- and preferably only one --obvious
      • 6
        High Documented language
      • 6
        I love snakes
      • 6
        Although practicality beats purity
      • 6
        Flat is better than nested
      • 6
        Now is better than never
      • 5
        Great for analytics
      • 5
        Lists, tuples, dictionaries
      • 4
        Easy to learn and use
      • 4
        Web scraping
      • 4
        Simple and easy to learn
      • 4
        Easy to setup and run smooth
      • 4
        Plotting
      • 4
        Beautiful is better than ugly
      • 4
        Multiple Inheritence
      • 4
        Complex is better than complicated
      • 4
        Socially engaged community
      • 4
        CG industry needs
      • 3
        Flexible and easy
      • 3
        Many types of collections
      • 3
        If the implementation is easy to explain, it may be a g
      • 3
        If the implementation is hard to explain, it's a bad id
      • 3
        Special cases aren't special enough to break the rules
      • 3
        Pip install everything
      • 3
        List comprehensions
      • 3
        No cruft
      • 3
        Generators
      • 3
        Import this
      • 3
        It is Very easy , simple and will you be love programmi
      • 2
        Can understand easily who are new to programming
      • 2
        Powerful language for AI
      • 2
        Should START with this but not STICK with This
      • 2
        A-to-Z
      • 2
        Because of Netflix
      • 2
        Only one way to do it
      • 2
        Better outcome
      • 2
        Good for hacking
      • 2
        Securit
      • 2
        Batteries included
      • 1
        Automation friendly
      • 1
        Sexy af
      • 1
        Slow
      • 1
        Procedural programming
      • 0
        Ni
      • 0
        Powerful
      • 0
        Keep it simple
      CONS OF PYTHON
      • 53
        Still divided between python 2 and python 3
      • 28
        Performance impact
      • 26
        Poor syntax for anonymous functions
      • 22
        GIL
      • 19
        Package management is a mess
      • 14
        Too imperative-oriented
      • 12
        Hard to understand
      • 12
        Dynamic typing
      • 12
        Very slow
      • 8
        Indentations matter a lot
      • 8
        Not everything is expression
      • 7
        Incredibly slow
      • 7
        Explicit self parameter in methods
      • 6
        Requires C functions for dynamic modules
      • 6
        Poor DSL capabilities
      • 6
        No anonymous functions
      • 5
        Fake object-oriented programming
      • 5
        Threading
      • 5
        The "lisp style" whitespaces
      • 5
        Official documentation is unclear.
      • 5
        Hard to obfuscate
      • 5
        Circular import
      • 4
        Lack of Syntax Sugar leads to "the pyramid of doom"
      • 4
        The benevolent-dictator-for-life quit
      • 4
        Not suitable for autocomplete
      • 2
        Meta classes
      • 1
        Training wheels (forced indentation)

      related Python posts

      Conor Myhrvold
      Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 11.6M views

      How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

      Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

      Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

      https://eng.uber.com/distributed-tracing/

      (GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

      Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

      See more
      Nick Parsons
      Building cool things on the internet 🛠️ at Stream · | 35 upvotes · 4.2M views

      Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.

      We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)

      We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.

      Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.

      #FrameworksFullStack #Languages

      See more
      jQuery logo

      jQuery

      191.2K
      67.7K
      6.6K
      The Write Less, Do More, JavaScript Library.
      191.2K
      67.7K
      + 1
      6.6K
      PROS OF JQUERY
      • 1.3K
        Cross-browser
      • 957
        Dom manipulation
      • 809
        Power
      • 660
        Open source
      • 610
        Plugins
      • 459
        Easy
      • 395
        Popular
      • 350
        Feature-rich
      • 281
        Html5
      • 227
        Light weight
      • 93
        Simple
      • 84
        Great community
      • 79
        CSS3 Compliant
      • 69
        Mobile friendly
      • 67
        Fast
      • 43
        Intuitive
      • 42
        Swiss Army knife for webdev
      • 35
        Huge Community
      • 11
        Easy to learn
      • 4
        Clean code
      • 3
        Because of Ajax request :)
      • 2
        Powerful
      • 2
        Nice
      • 2
        Just awesome
      • 2
        Used everywhere
      • 1
        Improves productivity
      • 1
        Javascript
      • 1
        Easy Setup
      • 1
        Open Source, Simple, Easy Setup
      • 1
        It Just Works
      • 1
        Industry acceptance
      • 1
        Allows great manipulation of HTML and CSS
      • 1
        Widely Used
      • 1
        I love jQuery
      CONS OF JQUERY
      • 6
        Large size
      • 5
        Sometimes inconsistent API
      • 5
        Encourages DOM as primary data source
      • 2
        Live events is overly complex feature

      related jQuery posts

      Kir Shatrov
      Engineering Lead at Shopify · | 22 upvotes · 2.3M views

      The client-side stack of Shopify Admin has been a long journey. It started with HTML templates, jQuery and Prototype. We moved to Batman.js, our in-house Single-Page-Application framework (SPA), in 2013. Then, we re-evaluated our approach and moved back to statically rendered HTML and vanilla JavaScript. As the front-end ecosystem matured, we felt that it was time to rethink our approach again. Last year, we started working on moving Shopify Admin to React and TypeScript.

      Many things have changed since the days of jQuery and Batman. JavaScript execution is much faster. We can easily render our apps on the server to do less work on the client, and the resources and tooling for developers are substantially better with React than we ever had with Batman.

      #FrameworksFullStack #Languages

      See more
      Ganesa Vijayakumar
      Full Stack Coder | Technical Architect · | 19 upvotes · 5M views

      I'm planning to create a web application and also a mobile application to provide a very good shopping experience to the end customers. Shortly, my application will be aggregate the product details from difference sources and giving a clear picture to the user that when and where to buy that product with best in Quality and cost.

      I have planned to develop this in many milestones for adding N number of features and I have picked my first part to complete the core part (aggregate the product details from different sources).

      As per my work experience and knowledge, I have chosen the followings stacks to this mission.

      UI: I would like to develop this application using React, React Router and React Native since I'm a little bit familiar on this and also most importantly these will help on developing both web and mobile apps. In addition, I'm gonna use the stacks JavaScript, jQuery, jQuery UI, jQuery Mobile, Bootstrap wherever required.

      Service: I have planned to use Java as the main business layer language as I have 7+ years of experience on this I believe I can do better work using Java than other languages. In addition, I'm thinking to use the stacks Node.js.

      Database and ORM: I'm gonna pick MySQL as DB and Hibernate as ORM since I have a piece of good knowledge and also work experience on this combination.

      Search Engine: I need to deal with a large amount of product data and it's in-detailed info to provide enough details to end user at the same time I need to focus on the performance area too. so I have decided to use Solr as a search engine for product search and suggestions. In addition, I'm thinking to replace Solr by Elasticsearch once explored/reviewed enough about Elasticsearch.

      Host: As of now, my plan to complete the application with decent features first and deploy it in a free hosting environment like Docker and Heroku and then once it is stable then I have planned to use the AWS products Amazon S3, EC2, Amazon RDS and Amazon Route 53. I'm not sure about Microsoft Azure that what is the specialty in it than Heroku and Amazon EC2 Container Service. Anyhow, I will do explore these once again and pick the best suite one for my requirement once I reached this level.

      Build and Repositories: I have decided to choose Apache Maven and Git as these are my favorites and also so popular on respectively build and repositories.

      Additional Utilities :) - I would like to choose Codacy for code review as their Startup plan will be very helpful to this application. I'm already experienced with Google CheckStyle and SonarQube even I'm looking something on Codacy.

      Happy Coding! Suggestions are welcome! :)

      Thanks, Ganesa

      See more