Alternatives to Apache Drill logo

Alternatives to Apache Drill

Presto, Apache Spark, Apache Calcite, Apache Impala, and Druid are the most popular alternatives and competitors to Apache Drill.
72
171
+ 1
16

What is Apache Drill and what are its top alternatives?

Apache Drill is a distributed MPP query layer that supports SQL and alternative query languages against NoSQL and Hadoop data storage systems. It was inspired in part by Google's Dremel.
Apache Drill is a tool in the Database Tools category of a tech stack.

Top Alternatives to Apache Drill

  • Presto
    Presto

    Distributed SQL Query Engine for Big Data

  • Apache Spark
    Apache Spark

    Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning. ...

  • Apache Calcite
    Apache Calcite

    It is an open source framework for building databases and data management systems. It includes a SQL parser, an API for building expressions in relational algebra, and a query planning engine ...

  • Apache Impala
    Apache Impala

    Impala is a modern, open source, MPP SQL query engine for Apache Hadoop. Impala is shipped by Cloudera, MapR, and Amazon. With Impala, you can query data, whether stored in HDFS or Apache HBase – including SELECT, JOIN, and aggregate functions – in real time. ...

  • Druid
    Druid

    Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations. ...

  • MySQL
    MySQL

    The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...

  • PostgreSQL
    PostgreSQL

    PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. ...

  • MongoDB
    MongoDB

    MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...

Apache Drill alternatives & related posts

Presto logo

Presto

394
66
Distributed SQL Query Engine for Big Data
394
66
PROS OF PRESTO
  • 18
    Works directly on files in s3 (no ETL)
  • 13
    Open-source
  • 12
    Join multiple databases
  • 10
    Scalable
  • 7
    Gets ready in minutes
  • 6
    MPP
CONS OF PRESTO
    Be the first to leave a con

    related Presto posts

    Ashish Singh
    Tech Lead, Big Data Platform at Pinterest · | 38 upvotes · 3.6M views

    To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

    Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

    We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

    Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

    Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

    #BigData #AWS #DataScience #DataEngineering

    See more
    Eric Colson
    Chief Algorithms Officer at Stitch Fix · | 21 upvotes · 6.2M views

    The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

    Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

    At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

    For more info:

    #DataScience #DataStack #Data

    See more
    Apache Spark logo

    Apache Spark

    3K
    140
    Fast and general engine for large-scale data processing
    3K
    140
    PROS OF APACHE SPARK
    • 61
      Open-source
    • 48
      Fast and Flexible
    • 8
      One platform for every big data problem
    • 8
      Great for distributed SQL like applications
    • 6
      Easy to install and to use
    • 3
      Works well for most Datascience usecases
    • 2
      Interactive Query
    • 2
      Machine learning libratimery, Streaming in real
    • 2
      In memory Computation
    CONS OF APACHE SPARK
    • 4
      Speed

    related Apache Spark posts

    Eric Colson
    Chief Algorithms Officer at Stitch Fix · | 21 upvotes · 6.2M views

    The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

    Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

    At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

    For more info:

    #DataScience #DataStack #Data

    See more
    Patrick Sun
    Software Engineer at Stitch Fix · | 10 upvotes · 77.7K views

    As a frontend engineer on the Algorithms & Analytics team at Stitch Fix, I work with data scientists to develop applications and visualizations to help our internal business partners make data-driven decisions. I envisioned a platform that would assist data scientists in the data exploration process, allowing them to visually explore and rapidly iterate through their assumptions, then share their insights with others. This would align with our team's philosophy of having engineers "deploy platforms, services, abstractions, and frameworks that allow the data scientists to conceive of, develop, and deploy their ideas with autonomy", and solve the pain of data exploration.

    The final product, code-named Dora, is built with React, Redux.js and Victory, backed by Elasticsearch to enable fast and iterative data exploration, and uses Apache Spark to move data from our Amazon S3 data warehouse into the Elasticsearch cluster.

    See more
    Apache Calcite logo

    Apache Calcite

    11
    0
    A dynamic data management framework
    11
    0
    PROS OF APACHE CALCITE
      Be the first to leave a pro
      CONS OF APACHE CALCITE
        Be the first to leave a con

        related Apache Calcite posts

        Apache Impala logo

        Apache Impala

        146
        18
        Real-time Query for Hadoop
        146
        18
        PROS OF APACHE IMPALA
        • 11
          Super fast
        • 1
          Massively Parallel Processing
        • 1
          Load Balancing
        • 1
          Replication
        • 1
          Scalability
        • 1
          Distributed
        • 1
          High Performance
        • 1
          Open Sourse
        CONS OF APACHE IMPALA
          Be the first to leave a con

          related Apache Impala posts

          I have been working on a Java application to demonstrate the latency for the select/insert/update operations on KUDU storage using Apache Kudu API - Java based client. I have a few queries about using Apache Kudu API

          1. Do we have JDBC wrapper to use Apache Kudu API for getting connection to Kudu masters with connection pool mechanism and all DB operations?

          2. Does Apache KuduAPI supports order by, group by, and aggregate functions? if yes, how to implement these functions using Kudu APIs.

          3. How can we add kudu predicates to Kudu update operation? if yes, how?

          4. Does Apache Kudu API supports batch insertion (execute the Kudu Insert for multiple rows at one go instead of row by row)? (like Kudusession.apply(List);)

          5. Does Apache Kudu API support join on tables?

          6. which tool is preferred over others (Apache Impala /Kudu API) for read and update/insert DB operations?

          See more
          Druid logo

          Druid

          382
          32
          Fast column-oriented distributed data store
          382
          32
          PROS OF DRUID
          • 15
            Real Time Aggregations
          • 6
            Batch and Real-Time Ingestion
          • 5
            OLAP
          • 3
            OLAP + OLTP
          • 2
            Combining stream and historical analytics
          • 1
            OLTP
          CONS OF DRUID
          • 3
            Limited sql support
          • 2
            Joins are not supported well
          • 1
            Complexity

          related Druid posts

          Shared insights
          on
          DruidDruidMongoDBMongoDB

          My background is in Data analytics in the telecom domain. Have to build the database for analyzing large volumes of CDR data so far the data are maintained in a file server and the application queries data from the files. It's consuming a lot of resources queries are taking time so now I am asked to come up with the approach. I planned to rewrite the app, so which database needs to be used. I am confused between MongoDB and Druid.

          So please do advise me on picking from these two and why?

          See more

          My process is like this: I would get data once a month, either from Google BigQuery or as parquet files from Azure Blob Storage. I have a script that does some cleaning and then stores the result as partitioned parquet files because the following process cannot handle loading all data to memory.

          The next process is making a heavy computation in a parallel fashion (per partition), and storing 3 intermediate versions as parquet files: two used for statistics, and the third will be filtered and create the final files.

          I make a report based on the two files in Jupyter notebook and convert it to HTML.

          • Everything is done with vanilla python and Pandas.
          • sometimes I may get a different format of data
          • cloud service is Microsoft Azure.

          What I'm considering is the following:

          Get the data with Kafka or with native python, do the first processing, and store data in Druid, the second processing will be done with Apache Spark getting data from apache druid.

          the intermediate states can be stored in druid too. and visualization would be with apache superset.

          See more
          MySQL logo

          MySQL

          126.8K
          3.8K
          The world's most popular open source database
          126.8K
          3.8K
          PROS OF MYSQL
          • 800
            Sql
          • 679
            Free
          • 562
            Easy
          • 528
            Widely used
          • 490
            Open source
          • 180
            High availability
          • 160
            Cross-platform support
          • 104
            Great community
          • 79
            Secure
          • 75
            Full-text indexing and searching
          • 26
            Fast, open, available
          • 16
            Reliable
          • 16
            SSL support
          • 15
            Robust
          • 9
            Enterprise Version
          • 7
            Easy to set up on all platforms
          • 3
            NoSQL access to JSON data type
          • 1
            Relational database
          • 1
            Easy, light, scalable
          • 1
            Sequel Pro (best SQL GUI)
          • 1
            Replica Support
          CONS OF MYSQL
          • 16
            Owned by a company with their own agenda
          • 3
            Can't roll back schema changes

          related MySQL posts

          Nick Rockwell
          SVP, Engineering at Fastly · | 46 upvotes · 4.3M views

          When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

          So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

          React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

          Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

          See more

          Hello, I am building a website for a school that's used by students to find Zoom meeting links, view their marks, and check course materials. It is also used by the teachers to put the meeting links, students' marks, and course materials.

          I created a similar website using HTML, CSS, PHP, and MySQL. Now I want to implement this project using some frameworks: Next.js, ExpressJS and use PostgreSQL instead of MYSQL

          I want to have some advice on whether these are enough to implement my project.

          See more
          PostgreSQL logo

          PostgreSQL

          99.3K
          3.5K
          A powerful, open source object-relational database system
          99.3K
          3.5K
          PROS OF POSTGRESQL
          • 764
            Relational database
          • 510
            High availability
          • 439
            Enterprise class database
          • 383
            Sql
          • 304
            Sql + nosql
          • 173
            Great community
          • 147
            Easy to setup
          • 131
            Heroku
          • 130
            Secure by default
          • 113
            Postgis
          • 50
            Supports Key-Value
          • 48
            Great JSON support
          • 34
            Cross platform
          • 33
            Extensible
          • 28
            Replication
          • 26
            Triggers
          • 23
            Multiversion concurrency control
          • 23
            Rollback
          • 21
            Open source
          • 18
            Heroku Add-on
          • 17
            Stable, Simple and Good Performance
          • 15
            Powerful
          • 13
            Lets be serious, what other SQL DB would you go for?
          • 11
            Good documentation
          • 9
            Scalable
          • 8
            Free
          • 8
            Reliable
          • 8
            Intelligent optimizer
          • 7
            Transactional DDL
          • 7
            Modern
          • 6
            One stop solution for all things sql no matter the os
          • 5
            Relational database with MVCC
          • 5
            Faster Development
          • 4
            Full-Text Search
          • 4
            Developer friendly
          • 3
            Excellent source code
          • 3
            Free version
          • 3
            Great DB for Transactional system or Application
          • 3
            Relational datanbase
          • 3
            search
          • 3
            Open-source
          • 2
            Text
          • 2
            Full-text
          • 1
            Can handle up to petabytes worth of size
          • 1
            Composability
          • 1
            Multiple procedural languages supported
          • 0
            Native
          CONS OF POSTGRESQL
          • 10
            Table/index bloatings

          related PostgreSQL posts

          Simon Reymann
          Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 12.2M views

          Our whole DevOps stack consists of the following tools:

          • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
          • Respectively Git as revision control system
          • SourceTree as Git GUI
          • Visual Studio Code as IDE
          • CircleCI for continuous integration (automatize development process)
          • Prettier / TSLint / ESLint as code linter
          • SonarQube as quality gate
          • Docker as container management (incl. Docker Compose for multi-container application management)
          • VirtualBox for operating system simulation tests
          • Kubernetes as cluster management for docker containers
          • Heroku for deploying in test environments
          • nginx as web server (preferably used as facade server in production environment)
          • SSLMate (using OpenSSL) for certificate management
          • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
          • PostgreSQL as preferred database system
          • Redis as preferred in-memory database/store (great for caching)

          The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

          • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
          • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
          • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
          • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
          • Scalability: All-in-one framework for distributed systems.
          • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
          See more

          Hello, I am building a website for a school that's used by students to find Zoom meeting links, view their marks, and check course materials. It is also used by the teachers to put the meeting links, students' marks, and course materials.

          I created a similar website using HTML, CSS, PHP, and MySQL. Now I want to implement this project using some frameworks: Next.js, ExpressJS and use PostgreSQL instead of MYSQL

          I want to have some advice on whether these are enough to implement my project.

          See more
          MongoDB logo

          MongoDB

          94.4K
          4.1K
          The database for giant ideas
          94.4K
          4.1K
          PROS OF MONGODB
          • 829
            Document-oriented storage
          • 594
            No sql
          • 554
            Ease of use
          • 465
            Fast
          • 410
            High performance
          • 255
            Free
          • 219
            Open source
          • 180
            Flexible
          • 145
            Replication & high availability
          • 112
            Easy to maintain
          • 42
            Querying
          • 39
            Easy scalability
          • 38
            Auto-sharding
          • 37
            High availability
          • 31
            Map/reduce
          • 27
            Document database
          • 25
            Easy setup
          • 25
            Full index support
          • 16
            Reliable
          • 15
            Fast in-place updates
          • 14
            Agile programming, flexible, fast
          • 12
            No database migrations
          • 8
            Easy integration with Node.Js
          • 8
            Enterprise
          • 6
            Enterprise Support
          • 5
            Great NoSQL DB
          • 4
            Support for many languages through different drivers
          • 3
            Schemaless
          • 3
            Aggregation Framework
          • 3
            Drivers support is good
          • 2
            Fast
          • 2
            Managed service
          • 2
            Easy to Scale
          • 2
            Awesome
          • 2
            Consistent
          • 1
            Good GUI
          • 1
            Acid Compliant
          CONS OF MONGODB
          • 6
            Very slowly for connected models that require joins
          • 3
            Not acid compliant
          • 2
            Proprietary query language

          related MongoDB posts

          Jeyabalaji Subramanian

          Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

          We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

          Based on the above criteria, we selected the following tools to perform the end to end data replication:

          We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

          We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

          In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

          Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

          In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

          See more
          Robert Zuber

          We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

          As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

          When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

          See more