Alternatives to Concourse logo

Alternatives to Concourse

Jenkins, CircleCI, Spinnaker, TeamCity, and GitLab CI are the most popular alternatives and competitors to Concourse.
259
390
+ 1
54

What is Concourse and what are its top alternatives?

Concourse's principles reduce the risk of switching to and from Concourse, by encouraging practices that decouple your project from your CI's little details, and keeping all configuration in declarative files that can be checked into version control.
Concourse is a tool in the Continuous Integration category of a tech stack.
Concourse is an open source tool with 7.2K GitHub stars and 846 GitHub forks. Here’s a link to Concourse's open source repository on GitHub

Top Alternatives to Concourse

  • Jenkins
    Jenkins

    In a nutshell Jenkins CI is the leading open-source continuous integration server. Built with Java, it provides over 300 plugins to support building and testing virtually any project. ...

  • CircleCI
    CircleCI

    Continuous integration and delivery platform helps software teams rapidly release code with confidence by automating the build, test, and deploy process. Offers a modern software development platform that lets teams ramp. ...

  • Spinnaker
    Spinnaker

    Created at Netflix, it has been battle-tested in production by hundreds of teams over millions of deployments. It combines a powerful and flexible pipeline management system with integrations to the major cloud providers. ...

  • TeamCity
    TeamCity

    TeamCity is a user-friendly continuous integration (CI) server for professional developers, build engineers, and DevOps. It is trivial to setup and absolutely free for small teams and open source projects. ...

  • GitLab CI
    GitLab CI

    GitLab offers a continuous integration service. If you add a .gitlab-ci.yml file to the root directory of your repository, and configure your GitLab project to use a Runner, then each merge request or push triggers your CI pipeline. ...

  • Ansible
    Ansible

    Ansible is an IT automation tool. It can configure systems, deploy software, and orchestrate more advanced IT tasks such as continuous deployments or zero downtime rolling updates. Ansible’s goals are foremost those of simplicity and maximum ease of use. ...

  • JavaScript
    JavaScript

    JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles. ...

  • Git
    Git

    Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...

Concourse alternatives & related posts

Jenkins logo

Jenkins

57.5K
49.1K
2.2K
An extendable open source continuous integration server
57.5K
49.1K
+ 1
2.2K
PROS OF JENKINS
  • 523
    Hosted internally
  • 469
    Free open source
  • 318
    Great to build, deploy or launch anything async
  • 243
    Tons of integrations
  • 211
    Rich set of plugins with good documentation
  • 111
    Has support for build pipelines
  • 68
    Easy setup
  • 66
    It is open-source
  • 53
    Workflow plugin
  • 13
    Configuration as code
  • 12
    Very powerful tool
  • 11
    Many Plugins
  • 10
    Continuous Integration
  • 10
    Great flexibility
  • 9
    Git and Maven integration is better
  • 8
    100% free and open source
  • 7
    Slack Integration (plugin)
  • 7
    Github integration
  • 6
    Self-hosted GitLab Integration (plugin)
  • 6
    Easy customisation
  • 5
    Pipeline API
  • 5
    Docker support
  • 4
    Fast builds
  • 4
    Hosted Externally
  • 4
    Excellent docker integration
  • 4
    Platform idnependency
  • 3
    AWS Integration
  • 3
    JOBDSL
  • 3
    It's Everywhere
  • 3
    Customizable
  • 3
    Can be run as a Docker container
  • 3
    It`w worked
  • 2
    Loose Coupling
  • 2
    NodeJS Support
  • 2
    Build PR Branch Only
  • 2
    Easily extendable with seamless integration
  • 2
    PHP Support
  • 2
    Ruby/Rails Support
  • 2
    Universal controller
CONS OF JENKINS
  • 13
    Workarounds needed for basic requirements
  • 10
    Groovy with cumbersome syntax
  • 8
    Plugins compatibility issues
  • 7
    Lack of support
  • 7
    Limited abilities with declarative pipelines
  • 5
    No YAML syntax
  • 4
    Too tied to plugins versions

related Jenkins posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 8M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Thierry Schellenbach

Releasing new versions of our services is done by Travis CI. Travis first runs our test suite. Once it passes, it publishes a new release binary to GitHub.

Common tasks such as installing dependencies for the Go project, or building a binary are automated using plain old Makefiles. (We know, crazy old school, right?) Our binaries are compressed using UPX.

Travis has come a long way over the past years. I used to prefer Jenkins in some cases since it was easier to debug broken builds. With the addition of the aptly named “debug build” button, Travis is now the clear winner. It’s easy to use and free for open source, with no need to maintain anything.

#ContinuousIntegration #CodeCollaborationVersionControl

See more
CircleCI logo

CircleCI

12.6K
7K
974
Automate your development process quickly, safely, and at scale
12.6K
7K
+ 1
974
PROS OF CIRCLECI
  • 226
    Github integration
  • 177
    Easy setup
  • 153
    Fast builds
  • 94
    Competitively priced
  • 74
    Slack integration
  • 55
    Docker support
  • 45
    Awesome UI
  • 33
    Great customer support
  • 18
    Ios support
  • 14
    Hipchat integration
  • 13
    SSH debug access
  • 11
    Free for Open Source
  • 6
    Mobile support
  • 5
    Nodejs support
  • 5
    Bitbucket integration
  • 5
    YAML configuration
  • 4
    AWS CodeDeploy integration
  • 3
    Free for Github private repo
  • 3
    Great support
  • 2
    Clojurescript
  • 2
    Continuous Deployment
  • 2
    Parallelism
  • 2
    Clojure
  • 2
    OSX support
  • 2
    Simple, clean UI
  • 1
    Unstable
  • 1
    Ci
  • 1
    Favorite
  • 1
    Helpful documentation
  • 1
    Autoscaling
  • 1
    Extremely configurable
  • 1
    Works
  • 1
    Android support
  • 1
    Fair pricing
  • 1
    All inclusive testing
  • 1
    Japanese in rspec comment appears OK
  • 1
    Build PR Branch Only
  • 1
    So circular
  • 1
    Easy setup, easy to understand, fast and reliable
  • 1
    Parallel builds for slow test suites
  • 1
    Easy setup. 2.0 is fast!
  • 1
    Easy to deploy to private servers
  • 1
    Really easy to use
  • 0
    Stable
CONS OF CIRCLECI
  • 12
    Unstable
  • 6
    Scammy pricing structure
  • 0
    Aggressive Github permissions

related CircleCI posts

Russel Werner
Lead Engineer at StackShare · | 32 upvotes · 1.9M views

StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

#StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

See more
Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 9M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Spinnaker logo

Spinnaker

225
353
13
Multi-cloud continuous delivery platform for releasing software changes with high velocity and confidence
225
353
+ 1
13
PROS OF SPINNAKER
  • 13
    Mature
CONS OF SPINNAKER
  • 3
    No GitOps
  • 1
    Configuration time
  • 1
    Management overhead
  • 1
    Ease of use

related Spinnaker posts

John Kodumal

LaunchDarkly is almost a five year old company, and our methodology for deploying was state of the art... for 2014. We recently undertook a project to modernize the way we #deploy our software, moving from Ansible-based deploy scripts that executed on our local machines, to using Spinnaker (along with Terraform and Packer) as the basis of our deployment system. We've been using Armory's enterprise Spinnaker offering to make this project a reality.

See more
TeamCity logo

TeamCity

1.1K
1.1K
316
TeamCity is an ultimate Continuous Integration tool for professionals
1.1K
1.1K
+ 1
316
PROS OF TEAMCITY
  • 61
    Easy to configure
  • 37
    Reliable and high-quality
  • 32
    User friendly
  • 32
    On premise
  • 32
    Github integration
  • 18
    Great UI
  • 16
    Smart
  • 12
    Free for open source
  • 12
    Can run jobs in parallel
  • 8
    Crossplatform
  • 5
    Chain dependencies
  • 5
    Fully-functional out of the box
  • 4
    Great support by jetbrains
  • 4
    REST API
  • 4
    Projects hierarchy
  • 4
    100+ plugins
  • 3
    Personal notifications
  • 3
    Free for small teams
  • 3
    Build templates
  • 3
    Per-project permissions
  • 2
    Upload build artifacts
  • 2
    Smart build failure analysis and tracking
  • 2
    Ide plugins
  • 2
    GitLab integration
  • 2
    Artifact dependencies
  • 2
    Official reliable support
  • 2
    Build progress messages promoting from running process
  • 1
    Repository-stored, full settings dsl with ide support
  • 1
    Built-in artifacts repository
  • 1
    Powerful build chains / pipelines
  • 1
    TeamCity Professional is FREE
  • 0
    High-Availability
  • 0
    Hosted internally
CONS OF TEAMCITY
  • 3
    High costs for more than three build agents
  • 2
    Proprietary
  • 2
    User-friendly
  • 2
    User friendly

related TeamCity posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 8M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Sarah Elson
Product Growth at LambdaTest · | 4 upvotes · 756.9K views

@producthunt LambdaTest Selenium JavaScript Java Python PHP Cucumber TeamCity CircleCI With this new release of LambdaTest automation, you can run tests across an Online Selenium Grid of 2000+ browsers and OS combinations to perform cross browser testing. This saves you from the pain of maintaining the infrastructure and also saves you the licensing costs for browsers and operating systems. #testing #Seleniumgrid #Selenium #testautomation #automation #webdriver #producthunt hunted

See more
GitLab CI logo

GitLab CI

2.3K
1.6K
75
GitLab integrated CI to test, build and deploy your code
2.3K
1.6K
+ 1
75
PROS OF GITLAB CI
  • 22
    Robust CI with awesome Docker support
  • 13
    Simple configuration
  • 9
    All in one solution
  • 7
    Source Control and CI in one place
  • 5
    Integrated with VCS on commit
  • 5
    Free and open source
  • 5
    Easy to configure own build server i.e. GitLab-Runner
  • 2
    Hosted internally
  • 1
    Built-in Docker Registry
  • 1
    Built-in support of Review Apps
  • 1
    Pipeline could be started manually
  • 1
    Enable or disable pipeline by using env variables
  • 1
    Gitlab templates could be shared across logical group
  • 1
    Easy to setup the dedicated runner to particular job
  • 1
    Built-in support of Kubernetes
CONS OF GITLAB CI
  • 2
    Works best with GitLab repositories

related GitLab CI posts

I have got a small radio service running on Node.js. Front end is written with React and packed with Webpack . I use Docker for my #DeploymentWorkflow along with Docker Swarm and GitLab CI on a single Google Compute Engine instance, which is also a runner itself. Pretty unscalable decision but it works great for tiny projects. The project is available on https://fridgefm.com

See more
Joshua Dean Küpper
CEO at Scrayos UG (haftungsbeschränkt) · | 20 upvotes · 695.1K views

We use GitLab CI because of the great native integration as a part of the GitLab framework and the linting-capabilities it offers. The visualization of complex pipelines and the embedding within the project overview made Gitlab CI even more convenient. We use it for all projects, all deployments and as a part of GitLab Pages.

While we initially used the Shell-executor, we quickly switched to the Docker-executor and use it exclusively now.

We formerly used Jenkins but preferred to handle everything within GitLab . Aside from the unification of our infrastructure another motivation was the "configuration-in-file"-approach, that Gitlab CI offered, while Jenkins support of this concept was very limited and users had to resort to using the webinterface. Since the file is included within the repository, it is also version controlled, which was a huge plus for us.

See more
Ansible logo

Ansible

18.8K
15.2K
1.3K
Radically simple configuration-management, application deployment, task-execution, and multi-node orchestration engine
18.8K
15.2K
+ 1
1.3K
PROS OF ANSIBLE
  • 284
    Agentless
  • 210
    Great configuration
  • 199
    Simple
  • 176
    Powerful
  • 155
    Easy to learn
  • 69
    Flexible
  • 55
    Doesn't get in the way of getting s--- done
  • 35
    Makes sense
  • 30
    Super efficient and flexible
  • 27
    Powerful
  • 11
    Dynamic Inventory
  • 9
    Backed by Red Hat
  • 7
    Works with AWS
  • 6
    Cloud Oriented
  • 6
    Easy to maintain
  • 4
    Vagrant provisioner
  • 4
    Simple and powerful
  • 4
    Multi language
  • 4
    Simple
  • 4
    Because SSH
  • 4
    Procedural or declarative, or both
  • 4
    Easy
  • 3
    Consistency
  • 2
    Well-documented
  • 2
    Masterless
  • 2
    Debugging is simple
  • 2
    Merge hash to get final configuration similar to hiera
  • 2
    Fast as hell
  • 1
    Manage any OS
  • 1
    Work on windows, but difficult to manage
  • 1
    Certified Content
CONS OF ANSIBLE
  • 8
    Dangerous
  • 5
    Hard to install
  • 3
    Doesn't Run on Windows
  • 3
    Bloated
  • 3
    Backward compatibility
  • 2
    No immutable infrastructure

related Ansible posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 8M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Sebastian Gębski

Heroku was a decent choice to start a business, but at some point our platform was too big, too complex & too heterogenic, so Heroku started to be a constraint, not a benefit. First, we've started containerizing our apps with Docker to eliminate "works in my machine" syndrome & uniformize the environment setup. The first orchestration was composed with Docker Compose , but at some point it made sense to move it to Kubernetes. Fortunately, we've made a very good technical decision when starting our work with containers - all the container configuration & provisions HAD (since the beginning) to be done in code (Infrastructure as Code) - we've used Terraform & Ansible for that (correspondingly). This general trend of containerisation was accompanied by another, parallel & equally big project: migrating environments from Heroku to AWS: using Amazon EC2 , Amazon EKS, Amazon S3 & Amazon RDS.

See more
JavaScript logo

JavaScript

349.6K
266.2K
8.1K
Lightweight, interpreted, object-oriented language with first-class functions
349.6K
266.2K
+ 1
8.1K
PROS OF JAVASCRIPT
  • 1.7K
    Can be used on frontend/backend
  • 1.5K
    It's everywhere
  • 1.2K
    Lots of great frameworks
  • 896
    Fast
  • 745
    Light weight
  • 425
    Flexible
  • 392
    You can't get a device today that doesn't run js
  • 286
    Non-blocking i/o
  • 236
    Ubiquitousness
  • 191
    Expressive
  • 55
    Extended functionality to web pages
  • 49
    Relatively easy language
  • 46
    Executed on the client side
  • 30
    Relatively fast to the end user
  • 25
    Pure Javascript
  • 21
    Functional programming
  • 15
    Async
  • 13
    Full-stack
  • 12
    Setup is easy
  • 12
    Its everywhere
  • 11
    JavaScript is the New PHP
  • 11
    Because I love functions
  • 10
    Like it or not, JS is part of the web standard
  • 9
    Can be used in backend, frontend and DB
  • 9
    Expansive community
  • 9
    Future Language of The Web
  • 9
    Easy
  • 8
    No need to use PHP
  • 8
    For the good parts
  • 8
    Can be used both as frontend and backend as well
  • 8
    Everyone use it
  • 8
    Most Popular Language in the World
  • 8
    Easy to hire developers
  • 7
    Love-hate relationship
  • 7
    Powerful
  • 7
    Photoshop has 3 JS runtimes built in
  • 7
    Evolution of C
  • 7
    Popularized Class-Less Architecture & Lambdas
  • 7
    Agile, packages simple to use
  • 7
    Supports lambdas and closures
  • 6
    1.6K Can be used on frontend/backend
  • 6
    It's fun
  • 6
    Hard not to use
  • 6
    Nice
  • 6
    Client side JS uses the visitors CPU to save Server Res
  • 6
    Versitile
  • 6
    It let's me use Babel & Typescript
  • 6
    Easy to make something
  • 6
    Its fun and fast
  • 6
    Can be used on frontend/backend/Mobile/create PRO Ui
  • 5
    Function expressions are useful for callbacks
  • 5
    What to add
  • 5
    Client processing
  • 5
    Everywhere
  • 5
    Scope manipulation
  • 5
    Stockholm Syndrome
  • 5
    Promise relationship
  • 5
    Clojurescript
  • 4
    Because it is so simple and lightweight
  • 4
    Only Programming language on browser
  • 1
    Hard to learn
  • 1
    Test
  • 1
    Test2
  • 1
    Easy to understand
  • 1
    Not the best
  • 1
    Easy to learn
  • 1
    Subskill #4
  • 0
    Hard 彤
CONS OF JAVASCRIPT
  • 22
    A constant moving target, too much churn
  • 20
    Horribly inconsistent
  • 15
    Javascript is the New PHP
  • 9
    No ability to monitor memory utilitization
  • 8
    Shows Zero output in case of ANY error
  • 7
    Thinks strange results are better than errors
  • 6
    Can be ugly
  • 3
    No GitHub
  • 2
    Slow

related JavaScript posts

Zach Holman

Oof. I have truly hated JavaScript for a long time. Like, for over twenty years now. Like, since the Clinton administration. It's always been a nightmare to deal with all of the aspects of that silly language.

But wowza, things have changed. Tooling is just way, way better. I'm primarily web-oriented, and using React and Apollo together the past few years really opened my eyes to building rich apps. And I deeply apologize for using the phrase rich apps; I don't think I've ever said such Enterprisey words before.

But yeah, things are different now. I still love Rails, and still use it for a lot of apps I build. But it's that silly rich apps phrase that's the problem. Users have way more comprehensive expectations than they did even five years ago, and the JS community does a good job at building tools and tech that tackle the problems of making heavy, complicated UI and frontend work.

Obviously there's a lot of things happening here, so just saying "JavaScript isn't terrible" might encompass a huge amount of libraries and frameworks. But if you're like me, yeah, give things another shot- I'm somehow not hating on JavaScript anymore and... gulp... I kinda love it.

See more
Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 9.6M views

How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

https://eng.uber.com/distributed-tracing/

(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

See more
Git logo

Git

288.5K
173.5K
6.6K
Fast, scalable, distributed revision control system
288.5K
173.5K
+ 1
6.6K
PROS OF GIT
  • 1.4K
    Distributed version control system
  • 1.1K
    Efficient branching and merging
  • 959
    Fast
  • 845
    Open source
  • 726
    Better than svn
  • 368
    Great command-line application
  • 306
    Simple
  • 291
    Free
  • 232
    Easy to use
  • 222
    Does not require server
  • 27
    Distributed
  • 22
    Small & Fast
  • 18
    Feature based workflow
  • 15
    Staging Area
  • 13
    Most wide-spread VSC
  • 11
    Role-based codelines
  • 11
    Disposable Experimentation
  • 7
    Frictionless Context Switching
  • 6
    Data Assurance
  • 5
    Efficient
  • 4
    Just awesome
  • 3
    Github integration
  • 3
    Easy branching and merging
  • 2
    Compatible
  • 2
    Flexible
  • 2
    Possible to lose history and commits
  • 1
    Rebase supported natively; reflog; access to plumbing
  • 1
    Light
  • 1
    Team Integration
  • 1
    Fast, scalable, distributed revision control system
  • 1
    Easy
  • 1
    Flexible, easy, Safe, and fast
  • 1
    CLI is great, but the GUI tools are awesome
  • 1
    It's what you do
  • 0
    Phinx
CONS OF GIT
  • 16
    Hard to learn
  • 11
    Inconsistent command line interface
  • 9
    Easy to lose uncommitted work
  • 7
    Worst documentation ever possibly made
  • 5
    Awful merge handling
  • 3
    Unexistent preventive security flows
  • 3
    Rebase hell
  • 2
    When --force is disabled, cannot rebase
  • 2
    Ironically even die-hard supporters screw up badly
  • 1
    Doesn't scale for big data

related Git posts

Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 9M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 8M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more