Alternatives to Atlas-DB logo

Alternatives to Atlas-DB

MongoDB Atlas, Azure Cosmos DB, MongoDB, MySQL, and PostgreSQL are the most popular alternatives and competitors to Atlas-DB.
6
77
+ 1
0

What is Atlas-DB and what are its top alternatives?

Atlas-DB is a distributed key-value store that is designed for performance, scalability, and flexibility. It offers features such as strong consistency, multi-datacenter replication, low-latency reads and writes, and automatic sharding. However, Atlas-DB also has limitations such as being tightly coupled to the hosting provider, limited control over underlying infrastructure, and potential vendor lock-in.

  1. DynamoDB: DynamoDB is a fully managed NoSQL database service provided by AWS. Key features include seamless scaling, high availability, and low latency reads and writes. Pros: Fully managed service, seamless scaling. Cons: Potentially higher costs compared to self-hosted solutions.
  2. Cassandra: Apache Cassandra is a highly scalable distributed NoSQL database. Key features include decentralized architecture, linear scalability, and fault tolerance. Pros: High scalability, fault tolerance. Cons: Higher complexity compared to other solutions.
  3. MongoDB: MongoDB is a popular document database that offers flexibility and scalability. Key features include document-oriented storage, dynamic schemas, and high availability. Pros: Flexible schema, easy to scale. Cons: Less suitable for complex queries compared to relational databases.
  4. CockroachDB: CockroachDB is a distributed SQL database that offers horizontal scalability and strong consistency. Key features include distributed SQL support, automatic sharding, and ACID transactions. Pros: Strong consistency, scalable. Cons: Limited adoption compared to other databases.
  5. Google Cloud Bigtable: Bigtable is a fully managed NoSQL database service by Google Cloud. Key features include high performance, scalability, and low latency. Pros: Fully managed service, scalable. Cons: Limited support for complex queries.
  6. ScyllaDB: ScyllaDB is a high-performance NoSQL database that is compatible with Apache Cassandra. Key features include low latency, linear scalability, and high throughput. Pros: High performance, compatibility with Cassandra. Cons: Requires more resources compared to other solutions.
  7. Aerospike: Aerospike is a high-performance, distributed NoSQL database. Key features include fast writes and reads, automatic sharding, and high availability. Pros: High performance, low-latency reads and writes. Cons: Limited community support compared to other solutions.
  8. YugabyteDB: YugabyteDB is a distributed SQL database that offers high availability and scalability. Key features include globally distributed deployments, ACID transactions, and PostgreSQL compatibility. Pros: Global deployments, built-in sharding. Cons: Still relatively new in the market.
  9. Redis: Redis is an open-source, in-memory data structure store. Key features include high performance, data structures support, and clustering. Pros: High performance, versatile data structures. Cons: Limited storage capacity compared to disk-based databases.
  10. TiDB: TiDB is a distributed SQL database that offers horizontal scalability and high availability. Key features include hybrid transactional and analytical processing (HTAP), distributed SQL support, and MySQL compatibility. Pros: HTAP support, MySQL compatibility. Cons: Requires more resources compared to traditional relational databases.

Top Alternatives to Atlas-DB

  • MongoDB Atlas
    MongoDB Atlas

    MongoDB Atlas is a global cloud database service built and run by the team behind MongoDB. Enjoy the flexibility and scalability of a document database, with the ease and automation of a fully managed service on your preferred cloud. ...

  • Azure Cosmos DB
    Azure Cosmos DB

    Azure DocumentDB is a fully managed NoSQL database service built for fast and predictable performance, high availability, elastic scaling, global distribution, and ease of development. ...

  • MongoDB
    MongoDB

    MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...

  • MySQL
    MySQL

    The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...

  • PostgreSQL
    PostgreSQL

    PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. ...

  • Redis
    Redis

    Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams. ...

  • Amazon S3
    Amazon S3

    Amazon Simple Storage Service provides a fully redundant data storage infrastructure for storing and retrieving any amount of data, at any time, from anywhere on the web ...

  • GitHub Actions
    GitHub Actions

    It makes it easy to automate all your software workflows, now with world-class CI/CD. Build, test, and deploy your code right from GitHub. Make code reviews, branch management, and issue triaging work the way you want. ...

Atlas-DB alternatives & related posts

MongoDB Atlas logo

MongoDB Atlas

846
34
Deploy and scale a MongoDB cluster in the cloud with just a few clicks
846
34
PROS OF MONGODB ATLAS
  • 10
    MongoDB SaaS for and by Mongo, makes it so easy
  • 6
    Amazon VPC peering
  • 4
    Granular role-based access controls
  • 4
    MongoDB atlas is GUItool through you can manage all DB
  • 3
    Use it anywhere
  • 3
    Cloud instance to be worked with
  • 3
    Built-in data browser
  • 1
    Simple and easy to integrate
CONS OF MONGODB ATLAS
    Be the first to leave a con

    related MongoDB Atlas posts

    Praveen Mooli
    Engineering Manager at Taylor and Francis · | 19 upvotes · 4M views

    We are in the process of building a modern content platform to deliver our content through various channels. We decided to go with Microservices architecture as we wanted scale. Microservice architecture style is an approach to developing an application as a suite of small independently deployable services built around specific business capabilities. You can gain modularity, extensive parallelism and cost-effective scaling by deploying services across many distributed servers. Microservices modularity facilitates independent updates/deployments, and helps to avoid single point of failure, which can help prevent large-scale outages. We also decided to use Event Driven Architecture pattern which is a popular distributed asynchronous architecture pattern used to produce highly scalable applications. The event-driven architecture is made up of highly decoupled, single-purpose event processing components that asynchronously receive and process events.

    To build our #Backend capabilities we decided to use the following: 1. #Microservices - Java with Spring Boot , Node.js with ExpressJS and Python with Flask 2. #Eventsourcingframework - Amazon Kinesis , Amazon Kinesis Firehose , Amazon SNS , Amazon SQS, AWS Lambda 3. #Data - Amazon RDS , Amazon DynamoDB , Amazon S3 , MongoDB Atlas

    To build #Webapps we decided to use Angular 2 with RxJS

    #Devops - GitHub , Travis CI , Terraform , Docker , Serverless

    See more

    Repost

    Overview: To put it simply, we plan to use the MERN stack to build our web application. MongoDB will be used as our primary database. We will use ExpressJS alongside Node.js to set up our API endpoints. Additionally, we plan to use React to build our SPA on the client side and use Redis on the server side as our primary caching solution. Initially, while working on the project, we plan to deploy our server and client both on Heroku . However, Heroku is very limited and we will need the benefits of an Infrastructure as a Service so we will use Amazon EC2 to later deploy our final version of the application.

    Serverside: nodemon will allow us to automatically restart a running instance of our node app when files changes take place. We decided to use MongoDB because it is a non relational database which uses the Document Object Model. This allows a lot of flexibility as compared to a RDMS like SQL which requires a very structural model of data that does not change too much. Another strength of MongoDB is its ease in scalability. We will use Mongoose along side MongoDB to model our application data. Additionally, we will host our MongoDB cluster remotely on MongoDB Atlas. Bcrypt will be used to encrypt user passwords that will be stored in the DB. This is to avoid the risks of storing plain text passwords. Moreover, we will use Cloudinary to store images uploaded by the user. We will also use the Twilio SendGrid API to enable automated emails sent by our application. To protect private API endpoints, we will use JSON Web Token and Passport. Also, PayPal will be used as a payment gateway to accept payments from users.

    Client Side: As mentioned earlier, we will use React to build our SPA. React uses a virtual DOM which is very efficient in rendering a page. Also React will allow us to reuse components. Furthermore, it is very popular and there is a large community that uses React so it can be helpful if we run into issues. We also plan to make a cross platform mobile application later and using React will allow us to reuse a lot of our code with React Native. Redux will be used to manage state. Redux works great with React and will help us manage a global state in the app and avoid the complications of each component having its own state. Additionally, we will use Bootstrap components and custom CSS to style our app.

    Other: Git will be used for version control. During the later stages of our project, we will use Google Analytics to collect useful data regarding user interactions. Moreover, Slack will be our primary communication tool. Also, we will use Visual Studio Code as our primary code editor because it is very light weight and has a wide variety of extensions that will boost productivity. Postman will be used to interact with and debug our API endpoints.

    See more
    Azure Cosmos DB logo

    Azure Cosmos DB

    593
    130
    A fully-managed, globally distributed NoSQL database service
    593
    130
    PROS OF AZURE COSMOS DB
    • 28
      Best-of-breed NoSQL features
    • 22
      High scalability
    • 15
      Globally distributed
    • 14
      Automatic indexing over flexible json data model
    • 10
      Tunable consistency
    • 10
      Always on with 99.99% availability sla
    • 7
      Javascript language integrated transactions and queries
    • 6
      Predictable performance
    • 5
      High performance
    • 5
      Analytics Store
    • 2
      Rapid Development
    • 2
      No Sql
    • 2
      Auto Indexing
    • 2
      Ease of use
    CONS OF AZURE COSMOS DB
    • 18
      Pricing
    • 4
      Poor No SQL query support

    related Azure Cosmos DB posts

    Stephen Gheysens
    Lead Solutions Engineer at Inscribe · | 7 upvotes · 477.8K views

    Google Maps lets "property owners and their authorized representatives" upload indoor maps, but this appears to lack navigation ("wayfinding").

    MappedIn is a platform and has SDKs for building indoor mapping experiences (https://www.mappedin.com/) and ESRI ArcGIS also offers some indoor mapping tools (https://www.esri.com/en-us/arcgis/indoor-gis/overview). Finally, there used to be a company called LocusLabs that is now a part of Atrius and they were often integrated into airlines' apps to provide airport maps with wayfinding (https://atrius.com/solutions/personal-experiences/personal-wayfinder/).

    I previously worked at Mapbox and while I believe that it's a great platform for building map-based experiences, they don't have any simple solutions for indoor wayfinding. If I were doing this for fun as a side-project and prioritized saving money over saving time, here is what I would do:

    • Create a graph-based dataset representing the walking paths around your university, where nodes/vertexes represent the intersections of paths, and edges represent paths (literally paths outside, hallways, short path segments that represent entering rooms). You could store this in a hosted graph-based database like Neo4j, Amazon Neptune , or Azure Cosmos DB (with its Gremlin API) and use built-in "shortest path" queries, or deploy a PostgreSQL service with pgRouting.

    • Add two properties to each edge: one property for the distance between its nodes (libraries like @turf/helpers will have a distance function if you have the latitude & longitude of each node), and another property estimating the walking time (based on the distance). Once you have these values saved in a graph-based format, you should be able to easily query and find the data representation of paths between two points.

    • At this point, you'd have the routing problem solved and it would come down to building a UI. Mapbox arguably leads the industry in developer tools for custom map experiences. You could convert your nodes/edges to GeoJSON, then either upload to Mapbox and create a Tileset to visualize the paths, or add the GeoJSON to the map on the fly.

    *You might be able to use open source routing tools like OSRM (https://github.com/Project-OSRM/osrm-backend/issues/6257) or Graphhopper (instead of a custom graph database implementation), but it would likely be more involved to maintain these services.

    See more

    We have an in-house build experiment management system. We produce samples as input to the next step, which then could produce 1 sample(1-1) and many samples (1 - many). There are many steps like this. So far, we are tracking genealogy (limited tracking) in the MySQL database, which is becoming hard to trace back to the original material or sample(I can give more details if required). So, we are considering a Graph database. I am requesting advice from the experts.

    1. Is a graph database the right choice, or can we manage with RDBMS?
    2. If RDBMS, which RDMS, which feature, or which approach could make this manageable or sustainable
    3. If Graph database(Neo4j, OrientDB, Azure Cosmos DB, Amazon Neptune, ArangoDB), which one is good, and what are the best practices?

    I am sorry that this might be a loaded question.

    See more
    MongoDB logo

    MongoDB

    94K
    4.1K
    The database for giant ideas
    94K
    4.1K
    PROS OF MONGODB
    • 828
      Document-oriented storage
    • 593
      No sql
    • 553
      Ease of use
    • 464
      Fast
    • 410
      High performance
    • 255
      Free
    • 218
      Open source
    • 180
      Flexible
    • 145
      Replication & high availability
    • 112
      Easy to maintain
    • 42
      Querying
    • 39
      Easy scalability
    • 38
      Auto-sharding
    • 37
      High availability
    • 31
      Map/reduce
    • 27
      Document database
    • 25
      Easy setup
    • 25
      Full index support
    • 16
      Reliable
    • 15
      Fast in-place updates
    • 14
      Agile programming, flexible, fast
    • 12
      No database migrations
    • 8
      Easy integration with Node.Js
    • 8
      Enterprise
    • 6
      Enterprise Support
    • 5
      Great NoSQL DB
    • 4
      Support for many languages through different drivers
    • 3
      Schemaless
    • 3
      Aggregation Framework
    • 3
      Drivers support is good
    • 2
      Fast
    • 2
      Managed service
    • 2
      Easy to Scale
    • 2
      Awesome
    • 2
      Consistent
    • 1
      Good GUI
    • 1
      Acid Compliant
    CONS OF MONGODB
    • 6
      Very slowly for connected models that require joins
    • 3
      Not acid compliant
    • 2
      Proprietary query language

    related MongoDB posts

    Jeyabalaji Subramanian

    Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

    We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

    Based on the above criteria, we selected the following tools to perform the end to end data replication:

    We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

    We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

    In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

    Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

    In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

    See more
    Robert Zuber

    We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

    As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

    When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

    See more
    MySQL logo

    MySQL

    126.1K
    3.8K
    The world's most popular open source database
    126.1K
    3.8K
    PROS OF MYSQL
    • 800
      Sql
    • 679
      Free
    • 562
      Easy
    • 528
      Widely used
    • 490
      Open source
    • 180
      High availability
    • 160
      Cross-platform support
    • 104
      Great community
    • 79
      Secure
    • 75
      Full-text indexing and searching
    • 26
      Fast, open, available
    • 16
      Reliable
    • 16
      SSL support
    • 15
      Robust
    • 9
      Enterprise Version
    • 7
      Easy to set up on all platforms
    • 3
      NoSQL access to JSON data type
    • 1
      Relational database
    • 1
      Easy, light, scalable
    • 1
      Sequel Pro (best SQL GUI)
    • 1
      Replica Support
    CONS OF MYSQL
    • 16
      Owned by a company with their own agenda
    • 3
      Can't roll back schema changes

    related MySQL posts

    Nick Rockwell
    SVP, Engineering at Fastly · | 46 upvotes · 4.3M views

    When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

    So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

    React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

    Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

    See more
    Tim Abbott

    We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

    We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

    And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

    I can't recommend it highly enough.

    See more
    PostgreSQL logo

    PostgreSQL

    98.8K
    3.5K
    A powerful, open source object-relational database system
    98.8K
    3.5K
    PROS OF POSTGRESQL
    • 764
      Relational database
    • 510
      High availability
    • 439
      Enterprise class database
    • 383
      Sql
    • 304
      Sql + nosql
    • 173
      Great community
    • 147
      Easy to setup
    • 131
      Heroku
    • 130
      Secure by default
    • 113
      Postgis
    • 50
      Supports Key-Value
    • 48
      Great JSON support
    • 34
      Cross platform
    • 33
      Extensible
    • 28
      Replication
    • 26
      Triggers
    • 23
      Multiversion concurrency control
    • 23
      Rollback
    • 21
      Open source
    • 18
      Heroku Add-on
    • 17
      Stable, Simple and Good Performance
    • 15
      Powerful
    • 13
      Lets be serious, what other SQL DB would you go for?
    • 11
      Good documentation
    • 9
      Scalable
    • 8
      Free
    • 8
      Reliable
    • 8
      Intelligent optimizer
    • 7
      Transactional DDL
    • 7
      Modern
    • 6
      One stop solution for all things sql no matter the os
    • 5
      Relational database with MVCC
    • 5
      Faster Development
    • 4
      Full-Text Search
    • 4
      Developer friendly
    • 3
      Excellent source code
    • 3
      Free version
    • 3
      Great DB for Transactional system or Application
    • 3
      Relational datanbase
    • 3
      search
    • 3
      Open-source
    • 2
      Text
    • 2
      Full-text
    • 1
      Can handle up to petabytes worth of size
    • 1
      Composability
    • 1
      Multiple procedural languages supported
    • 0
      Native
    CONS OF POSTGRESQL
    • 10
      Table/index bloatings

    related PostgreSQL posts

    Simon Reymann
    Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.9M views

    Our whole DevOps stack consists of the following tools:

    • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
    • Respectively Git as revision control system
    • SourceTree as Git GUI
    • Visual Studio Code as IDE
    • CircleCI for continuous integration (automatize development process)
    • Prettier / TSLint / ESLint as code linter
    • SonarQube as quality gate
    • Docker as container management (incl. Docker Compose for multi-container application management)
    • VirtualBox for operating system simulation tests
    • Kubernetes as cluster management for docker containers
    • Heroku for deploying in test environments
    • nginx as web server (preferably used as facade server in production environment)
    • SSLMate (using OpenSSL) for certificate management
    • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
    • PostgreSQL as preferred database system
    • Redis as preferred in-memory database/store (great for caching)

    The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

    • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
    • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
    • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
    • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
    • Scalability: All-in-one framework for distributed systems.
    • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
    See more
    Jeyabalaji Subramanian

    Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

    We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

    Based on the above criteria, we selected the following tools to perform the end to end data replication:

    We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

    We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

    In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

    Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

    In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

    See more
    Redis logo

    Redis

    59.8K
    3.9K
    Open source (BSD licensed), in-memory data structure store
    59.8K
    3.9K
    PROS OF REDIS
    • 887
      Performance
    • 542
      Super fast
    • 514
      Ease of use
    • 444
      In-memory cache
    • 324
      Advanced key-value cache
    • 194
      Open source
    • 182
      Easy to deploy
    • 165
      Stable
    • 156
      Free
    • 121
      Fast
    • 42
      High-Performance
    • 40
      High Availability
    • 35
      Data Structures
    • 32
      Very Scalable
    • 24
      Replication
    • 23
      Pub/Sub
    • 22
      Great community
    • 19
      "NoSQL" key-value data store
    • 16
      Hashes
    • 13
      Sets
    • 11
      Sorted Sets
    • 10
      Lists
    • 10
      NoSQL
    • 9
      Async replication
    • 9
      BSD licensed
    • 8
      Integrates super easy with Sidekiq for Rails background
    • 8
      Bitmaps
    • 7
      Open Source
    • 7
      Keys with a limited time-to-live
    • 6
      Lua scripting
    • 6
      Strings
    • 5
      Awesomeness for Free
    • 5
      Hyperloglogs
    • 4
      Runs server side LUA
    • 4
      Transactions
    • 4
      Networked
    • 4
      Outstanding performance
    • 4
      Feature Rich
    • 4
      Written in ANSI C
    • 4
      LRU eviction of keys
    • 3
      Data structure server
    • 3
      Performance & ease of use
    • 2
      Temporarily kept on disk
    • 2
      Dont save data if no subscribers are found
    • 2
      Automatic failover
    • 2
      Easy to use
    • 2
      Scalable
    • 2
      Channels concept
    • 2
      Object [key/value] size each 500 MB
    • 2
      Existing Laravel Integration
    • 2
      Simple
    CONS OF REDIS
    • 15
      Cannot query objects directly
    • 3
      No secondary indexes for non-numeric data types
    • 1
      No WAL

    related Redis posts

    Russel Werner
    Lead Engineer at StackShare · | 32 upvotes · 2.9M views

    StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

    Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

    #StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

    See more
    Simon Reymann
    Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.9M views

    Our whole DevOps stack consists of the following tools:

    • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
    • Respectively Git as revision control system
    • SourceTree as Git GUI
    • Visual Studio Code as IDE
    • CircleCI for continuous integration (automatize development process)
    • Prettier / TSLint / ESLint as code linter
    • SonarQube as quality gate
    • Docker as container management (incl. Docker Compose for multi-container application management)
    • VirtualBox for operating system simulation tests
    • Kubernetes as cluster management for docker containers
    • Heroku for deploying in test environments
    • nginx as web server (preferably used as facade server in production environment)
    • SSLMate (using OpenSSL) for certificate management
    • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
    • PostgreSQL as preferred database system
    • Redis as preferred in-memory database/store (great for caching)

    The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

    • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
    • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
    • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
    • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
    • Scalability: All-in-one framework for distributed systems.
    • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
    See more
    Amazon S3 logo

    Amazon S3

    53.5K
    2K
    Store and retrieve any amount of data, at any time, from anywhere on the web
    53.5K
    2K
    PROS OF AMAZON S3
    • 590
      Reliable
    • 492
      Scalable
    • 456
      Cheap
    • 329
      Simple & easy
    • 83
      Many sdks
    • 30
      Logical
    • 13
      Easy Setup
    • 11
      REST API
    • 11
      1000+ POPs
    • 6
      Secure
    • 4
      Easy
    • 4
      Plug and play
    • 3
      Web UI for uploading files
    • 2
      Faster on response
    • 2
      Flexible
    • 2
      GDPR ready
    • 1
      Easy to use
    • 1
      Plug-gable
    • 1
      Easy integration with CloudFront
    CONS OF AMAZON S3
    • 7
      Permissions take some time to get right
    • 6
      Requires a credit card
    • 6
      Takes time/work to organize buckets & folders properly
    • 3
      Complex to set up

    related Amazon S3 posts

    Ashish Singh
    Tech Lead, Big Data Platform at Pinterest · | 38 upvotes · 3.4M views

    To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

    Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

    We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

    Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

    Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

    #BigData #AWS #DataScience #DataEngineering

    See more
    Russel Werner
    Lead Engineer at StackShare · | 32 upvotes · 2.9M views

    StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

    Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

    #StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

    See more
    GitHub Actions logo

    GitHub Actions

    23.8K
    27
    Automate your workflow from idea to production
    23.8K
    27
    PROS OF GITHUB ACTIONS
    • 8
      Integration with GitHub
    • 5
      Free
    • 3
      Easy to duplicate a workflow
    • 3
      Ready actions in Marketplace
    • 2
      Configs stored in .github
    • 2
      Docker Support
    • 2
      Read actions in Marketplace
    • 1
      Active Development Roadmap
    • 1
      Fast
    CONS OF GITHUB ACTIONS
    • 5
      Lacking [skip ci]
    • 4
      Lacking allow failure
    • 3
      Lacking job specific badges
    • 2
      No ssh login to servers
    • 1
      No Deployment Projects
    • 1
      No manual launch

    related GitHub Actions posts

    Somnath Mahale
    Engineering Leader at Altimetrik Corp. · | 8 upvotes · 1.8M views

    I am in the process of evaluating CircleCI, Drone.io, and Github Actions to cover my #CI/ CD needs. I would appreciate your advice on comparative study w.r.t. attributes like language-Inclusive support, code-base integration, performance, cost, maintenance, support, ease of use, ability to deal with big projects, etc. based on actual industry experience.

    Thanks in advance!

    See more
    Shubham Chadokar
    Software Engineer Specialist at Kaleyra · | 6 upvotes · 138.3K views

    I have created a SaaS application. 1 backend service and 2 frontend services, all 3 run on different ports. I am using Amazon ECR images to deploy them on the EC2 server. My code is on GitHub. I want to automate this deployment process. How can I do this, and What tech stack should I use? It should be in sync with what I am currently using. On merge to master, it should build push the image to ECR and then later deploy again in the EC2 with the latest image. Maybe GitHub Actions or AWS CodePipeline would be ideal. Thanks, Shubham

    See more